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ABSTRACT

In decentralized wireless sensor networks, the decision taken
at the fusion center depends on the quality of the signals re-
ceived from the sensing nodes. The typical sources of errors
are observation noise, quantization errors due to source en-
coding, and communication noise, i.e. errors in the transmis-
sion from the sensing nodes to the sink node. In this work we
propose a method for allocating quantization bits and trans-
mission powers in each node in order to satisfy alternative
optimization criteria in either detection or estimation. In both
cases, to limit transmission errors, we enforce the additional
constraint that the number of coding bits on each sensor is
less than the channel capacity over the channel that connects
each sensor to the sink node.

Index Terms— Decentralized estimation, decentralized
detection, wireless sensor networks

1. INTRODUCTION

Wireless sensor networks (WSN) enable the distributed mon-
itoring of the environment through the fusion of the informa-
tion gathered by several sensors. A recent interesting develop-
ment of WSN’s is in cognitive radios, as a decentralized tool
to perform spectrum sensing and detection of spectral oppor-
tunities for secondary users. The approach is also of interest
for small cell networks, as a way to endow the network with
self-organization capabilities, in terms of radio resource allo-
cation. In such a case, the cooperation among different sens-
ing nodes is fundamental to prevent detection errors (either
false alarms or misdetections) due to local shadowing effects.
The distinguishing feature of decentralized decision, either
detection or estimation, systems is that the sensing and com-
munication steps are strictly intertwined with each other. In
particular, the radio resource allocation should be performed
in order to meet the requirements of either the estimation ac-
curacy or the probability of detection. This calls for a joint
optimization of source coding and radio resource allocation.

This work was funded by the European Community 7th Framework Pro-
gramme Project ICT-TROPIC, under grant nr. 318784.

Several works have already considered the decentralized es-
timation problem, see e.g. [1], [2] and the decentralized de-
tection problem [3]. Many works in literature have already
tackled the problem of distributed estimation and detection
incorporating realistic channels. In [4] the authors proposed
the minimization of the Euclidean norm of the transmit power
vector under the constraints that the estimation variance is
lower than a given quantity and that the number of bits per
symbol is less than the channel capacity. In [5], it has been
proposed an optimal design of quantization bits and power al-
location under the criterion of minimizing the distortion using
linear minimum mean square error estimation rule at the fu-
sion center, for a given total network power consumption. A
decentralized estimation strategy over a bandwidth-constraint
network has been considered in [6] where each sensor, before
sending its measured values to the fusion center, compresses
the measurement to a small number of bits without any knowl-
edge of the noise distribution function.
As far as distributed detection is concerned [3], the problem
of taking into account both channel capacity and number of
bits to quantize the local observations, becomes more compli-
cated. In [7] it was shown that binary quantization is optimal
for the problem of detecting deterministic signals in Gaus-
sian noise and for detecting signal in Gaussian noise using a
square-low detector. In [8] the authors propose a universal de-
centralized detector with a distributed sensor network where
each sensor is restricted to send a one-bit message to the fu-
sion center.
In this paper we propose an optimization strategy to find the
optimal number of coding bits and transmission powers in
each node in order to satisfy alternative optimization criteria
in either detection or estimation networks over fading com-
munication links. To make the effect of transmission errors
negligible, we constrain the number of coding bits per sample
to be less than channel capacity, expressed in bits per sym-
bol, in order to make the error probability on the transmitted
codeword arbitrarily small. More specifically, in the estima-
tion case, we find the optimal resource (power/bit) allocation
that minimizes the transmit power, while enforcing an upper
bound on the estimation variance. In the detection case, we
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derive the optimal transmit powers and bit allocation in order
to maximize the detection probability, under the constraints
of satisfying a given false alarm rate and a maximum transmit
power budget.

2. CENTRALIZED ESTIMATION WITH
DECENTRALIZED OBSERVATIONS

Let us consider N sensors observing a common deterministic
parameter ϑ corrupted by additive noise. The observation xk

of sensor k is described by

xk = ϑ+ nk, k = 1, . . . , N (1)

where the noise variables nk are supposed to be zero mean
spatially uncorrelated random variables with variance σ2

nk.
The nodes send their measurements to the fusion center that
carries out the estimation of the unknown parameter ϑ based
on the received messages. Since the system is controlled by
the fusion center, we assume that orthogonal channels are as-
signed to the links from different nodes so as to avoid inter-
ference. We assume that the estimation criterion adopted by
the fusion center is the minimization of the mean square er-
ror MSE(ϑ̂) = E[(ϑ̂ − ϑ)2]. According to the observation
model in (1), under an ideal transmission scenario where the
observations are unquantized and received by the fusion cen-
ter without errors, the best linear unbiased estimator having
minimum variance (BLUE) is given by [9]:

ϑ̂ =

(
N∑

k=1

1

σ2
nk

)−1 N∑
k=1

xk

σ2
nk

(2)

with MSE(ϑ̂) =

(
N∑

k=1

1

σ2
nk

)−1

. Under the assumption that

the noise variables are jointly Gaussian and uncorrelated, the
BLUE estimator coincides with the maximum likelihood es-
timator. Consider now the realistic case where each sensor
quantizes its observation xk to generate a discrete message
mk of qk bits. In the case of error-free transmission, the fu-
sion center is able to find an estimate ϑ̂ of the true parameter
by linearly combining the messages mk transmitted by all the
nodes. More specifically, assuming that the sensors employ
the uniform quantizer, let us suppose that the unknown sig-
nal to be estimated belongs to the interval [−A,A] and each
sensor divides the range [−A,A] uniformly into 2qk intervals
of length ∆k = 2A/2qk , rounding xk to the midpoint of the
interval into which it belongs. Hence, the quantized value mk

of xk at the k-th sensor can be modeled as the observation
plus a quantization noise vk, i.e.

mk = ϑ+ nk + vk, (3)

where the quantization noise vk can be assumed to be inde-
pendent of nk. By denoting with σ2

qk the quantization noise

variance given by

σ2
qk =

∆2
k

12
=

A2

3 · 22qk , (4)

a linear unbiased estimator of ϑ is [9]

ϑ̂ =

(
N∑

k=1

1

σ2
nk + σ2

qk

)−1 N∑
k=1

mk

σ2
nk + σ2

qk

(5)

and the resulting MSE is

E[(ϑ̂− ϑ)2] ≤
(

N∑
k=1

1

σ2
nk + σ2

qk

)−1

. (6)

As mentioned before, this formulation assumes that the trans-
mission links are error-free. To make this property as close to
reality as possible, we enforce the transmission rate of sensor
k to be less than the channel capacity from that sensor to the
fusion center. This poses a strict constraint between the max-
imum number of bits per sample qk and the channel capac-
ity, expressed in bits/symbol. Denoting with pk the transmit
power of sensor k, with hk the channel coefficient between
sensor k and the sink node and with N0 the noise variance at
the sink receiver, the constraint is

qk ≤ 1

2
log2

(
1 +

pkh
2
k

N0

)
. (7)

The problem is then how to allocate power and number of bits
over each channel in order to fulfil some optimality criterion
dictated by the estimation problem, while respecting (7). The
optimization problem proposed here is the minimization of
the total transmit power subject to the constraint that the final
MSE is upper bounded by a given quantity ε > 0. Note that,

from (7), defining ak =
h2
k

N0
, we can express the number of

quantization levels as a function of the transmit power1

22qk = 1 + pkak . (8)

Our aim is to minimize the sum of powers transmitted by all
the sensors under the constraint

(
N∑

k=1

1

σ2
nk + σ2

qk

)−1

≤ ε (9)

while guaranteeing (7). This formulation is similar to the one
considered in [4] except that we minimize the sum of powers,
whereas in [4] is the Euclidean norm of the power vector to be
minimized. Hence, substituting (4) in (9) and denoting with

1To simplify the problem and derive closed form expressions, we neglect
here the discretization of qk .
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p = (p1, . . . , pN ) the power vector, our optimization problem
can be formulated as follows

min
p

N∑
k=1

pk

s.t.
N∑

k=1

1

σ2
nk +

A2

3 · 22qk
≥ 1

ε

pk ≥ 0 ∀ k = 1, . . . , N

(10)

where qk is a function of pk, as in (7). Note that the values
qk are integer so that searching for the optimal integer values
qk leads to an integer programming problem. To relax the
problem, here we suppose that the variables qk are real. Then,
by exploiting (8), the optimization problem in (10) can be
reformulated as

min
p

N∑
k=1

pk

s.t.
N∑

k=1

1

σ2
nk +

A2

3(1 + pkak)

≥ 1

ε

p ≥ 0.

[P] (11)

Problem [P] is indeed a convex optimization problem and it

is feasible if
N∑

k=1

1

σ2
nk

>
1

ε
. Hence the optimal solution of the

convex problem [P] can be found by solving its dual problem,
i.e. by imposing the following Karush-Kuhn-Tucker (KKT)
conditions

1− µk − λ
3A2ak

[3σ2
nk(1 + pkak) +A2]2

= 0 ∀ k = 1, . . . , N

0 ≤ λ ⊥
N∑

k=1

3(1 + pkak)

3σ2
nk(1 + pkak) +A2

− 1

ε
≥ 0

0 ≤ µk ⊥ pk ≥ 0 ∀ k = 1, . . . , N
(12)

where λ and µk denote the Lagrangian multipliers associated
to the N + 1 constraints. Interestingly, the optimal powers
can be expressed in closed form as

p∗k =

⎡
⎣ 1

σ2
nk

√
λA2

3ak
− 1

ak
− A2

3akσ2
nk

⎤
⎦
+

(13)

where [x]+ := max(0, x) and λ > 0 is found by imposing
the MSE constraint (9) to be valid with equality.

Some numerical results are shown next to assess the ef-
fectiveness of our approach. In our example, the number of
sensors is N = 10 and N0 = 1. To guarantee the existence
of a solution, we set the bound ε = ηεmin with η > 1 and
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Fig. 1. Optimal power allocation of the sensors for problem
[P] by fixing the per-node observation noise variance.

εmin =

(
N∑

k=1

1

σ2
nk

)−1

. In Fig. 1 we report an example of op-

timal power allocation (bottom plot) obtained by solving the
optimization problem [P], corresponding to a given channel
realization (top plot), assuming a constant observation noise
variance σ2

nk = 0.1. It can be noticed that the optimal so-
lution tends to let only the nodes with the stronger channel
coefficients to transmit. Furthermore, in Fig. 2 we plot the
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Fig. 2. Sum of optimal powers versus N for several values of
η.

sum of the optimal transmit powers versus the number of sen-
sors N , for different values of η. We can see that the optimal
transmit power decreases as N increases, as expected, and
that, as η gets closer to one, more power is needed because
we are requiring the system to behave closer and closer to the
ideal communication system.
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3. CENTRALIZED DETECTION OF
DETERMINISTIC SIGNAL WITH DECENTRALIZED

OBSERVATIONS

We turn now our attention to the decentralized detection of
a known deterministic signal s embedded in additive noise.
Again, after local quantization, the sensors observations are
sent to a fusion center which takes the decision on the basis
of the collected data. Let us denote with x = (x1, . . . , xN )
the observation vector where xk represents the observation of
node k. Hence, denoting with H0 and H1 the two alterna-
tive hypotheses, i.e. absence or presence of the signal s, the
observation model is

x ∼
{

n+ v under H0

s+ n+ v under H1
, (14)

where s is the useful signal vector, n is the background noise,
and v is the quantization noise. Let us assume the noise
vector to be Gaussian with zero mean and spatial covariance
matrix Cn, i.e. n ∼ N (0,Cn). Additionally, let us con-
sider a dithered quantization so that the quantization error
can be modeled as a random process statistically indepen-
dent of noise. After dithering, the quantization noise vari-
ables over different sensors can be assumed to be statistically
independent. Hence, we can state that the quantization noise
vector v has zero mean and a diagonal covariance matrix
Cq = diag(σ2

q1, . . . , σ
2
qN ). If we suppose, as in the previ-

ous section, that the amplitude range of the useful signal is
[−A,A] and the number of bits used by node k is qk, the
quantization noise variance at node k is

σ2
qk =

∆2
k

12
=

A2

3 · 22qk . (15)

Hence, the overall noise n + v has a zero mean and covari-
ance matrix C = Cn +Cq .

In the case where the quantization noise can be neglected,
the Neyman-Pearson criterion applied to this case leads to the
following linear detector [10]

Γ(x) = R{sHC−1x}
H1

�
H0

γ (16)

where R(x) denotes the real part of x and the detection
threshold γ is chosen in order to guarantee the desired false
alarm probability Pfa. However, when the quantization er-
ror is not negligible, the detection rule in (16) is no longer
optimal because the composite noise n + v is not Gaussian.
Nevertheless, the rule used in (16) is still of interest as it max-
imizes the signal to noise ratio (SNR). Hence, it is meaningful
to evaluate the performance of this detector in the presence
of quantization noise. Since the computation of the pdf of
Γ(x) cannot be easily derived, the exact computation of the
detection probability in closed form is not easy. Nevertheless,

as the number of nodes becomes sufficiently high (an order
of a few tens can be sufficient to get a good approximation),
we can invoke the central limit theorem to state that Γ(x) is
approximately Gaussian. Using this approximation, we can
derive the detection probability in closed form for any fixed
Pfa as [10]

Pd = Q

[
Q−1 (Pfa)−

√
sH (Cn +Cq)

−1
s

]
. (17)

This formula establishes a useful relation between the detec-
tion probability and the number of bits allocated to each link.
At the same time, we can also use (17) to find out the bit
allocation that maximizes the detection probability. Proceed-
ing as in the previous section, we place an upper bound on
the maximum number of coding bits per signal sample equal
to the capacity of the channel between each sensor and the
fusion center. The problem we wish to solve is the maxi-
mization of the detection probability, for a given false alarm
rate and a maximum global transmit power, under the con-
straint that the number of bits per sample be less than channel
capacity. Denoting with pk the power transmitted by user k
and assuming flat fading channel, with channel coefficient h2

k,
and under the assumption, for simplicity, of spatially uncorre-
lated noise so that Cn = diag(σ2

n1, . . . , σ
2
nN ), the capacity is

given by (7). From (17), maximizing Pd is equivalent to max-
imizing sH (Cn +Cq)

−1
s. Hence, by fixing Pfa and using

(15), the maximum Pd, for a given global transmit power Pt,
can be achieved by finding the power vector p that solves the
following constrained problem

max
p

N∑
k=1

|sk|2
(
σ2
nk +

A2

3 (1 + ak pk)

)−1

s.t.
N∑

k=1

pk ≤ Pt, pk ≥ 0, k = 1, . . . , N. (18)

It is straightforward to prove that this is a convex problem.
Hence, imposing the KKT conditions, we can express the op-
timal powers in closed form as:

pk =

[
1√
λ

√
|sk|2A2

3akσ4
nk

− A2

3akσ2
nk

− 1

ak

]+

(19)

where the Lagrange multiplier λ associated to the sum-power
constraint can be determined by enforcing

∑N
k=1 pk = PT .

A numerical example is useful to grasp some of the prop-
erties of the proposed algorithm. Let us consider a series of
sensors placed along a bridge of length L. The goal of the
network is to detect one possible spatial resonance, which
we represent as the signal s(z) = A cos(πz/L), where z ∈
[−L/2, L/2] denotes the spatial coordinate. We suppose that
the sensors are uniformly spaced along the bridge, at posi-
tions zk = (k− 1)L/N , with k = 1, . . . , N . The observation
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Fig. 3. Detection probability vs. Pt, for various numbers of
sensors.
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Fig. 4. Per sensor optimal bit allocation.

of each sensor is xk = s(zk) + nk, affected by the error nk.
Before transmitting its own measurement to the fusion cen-
ter, every sensor quantizes the measurement first. The opti-
mal number of bits used by each sensor is found by solving
problem (18) in order to get the optimal powers and then the
optimal number of bits through (7). As an example, in Fig.
3 we plot the detection probability versus the power budget
Pt available to the whole set of sensors, for different numbers
N of sensors and Pfa = 0.1. We can observe that the opti-
mal detection probability increases as the total power budget
Pt increases because more bits per symbol can be transmitted
so that the quantization error decreases. Additionally, we can
notice how the detection probability improves as the number
of sensors increases, for any given transmit power. Finally,
in Fig. 4 we plot the optimal per channel bit allocation (bot-
tom plot) corresponding to the channels profile h2

k shown in
the top plot. Interestingly, we can see that, as expected, more
bits are allocated to the sensors having the best channels and

over the central elements of the array, where the useful signal
assumes the largest variations.

4. CONCLUSION

In this paper we have proposed optimal strategies to allocate
the number of coding bits for decentralized estimation and de-
tection over rate-constrained transmission channels, in order
to meet either an accuracy requirement or to maximize detec-
tion probability under a false alarm constraint. The interest-
ing aspect of the proposed strategies is that, once we relax the
constraint that the number of bits be an integer number, the
resulting problems, in both detection and estimation, become
convex problems that can be solved using efficient algorithms.
Furthermore, the optimal solutions can be expressed in closed
form. This facilitates the computation and the interpretation
of the optimal strategies.
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