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ABSTRACT

The knowledge of the primary emitter location is important in
cognitive radio networks as it is required to determine the ex-
clusion region of the primary network. We show that interpo-
lation based localization techniques do not provide accurate
primary emitter localization; however they can provide sig-
nificant complexity reduction when their estimates are used
to initialize more accurate iterative localization techniques.
In this paper, we generated interference maps using low com-
plexity interpolation techniques and provided their coarse es-
timates to initialize a Metropolis-Hastings (MH)based local-
ization algorithm. Our simulation results show that smart ini-
tialization of the MH algorithm eliminates tedious parame-
ter tuning process and achieves significantly better localiza-
tion performance than randomly initialized MH algorithm at
a fraction of iterations.

Index Terms— Cognitive radio networks, interference
map, primary emitter localization, Markov chain Monte
Carlo.

1. INTRODUCTION

The ever increasing use of wireless services is generating
a spectrum shortage problem. Flexible radio technologies
based on new dynamic access paradigms have been proposed
to address this problem. One challenge of dynamic spectrum
access is to decide whether the spectrum is available at a
given location and time. The problem is complicated due to
factors such as hidden nodes and sensitivity requirements.

The radio environment map (REM) concept has been in-
troduced as a versatile tool to maintain the operation of cog-
nitive radios. The REM contains information about the radio
environment in several domains such as terrain information,
radio regulations and static RF emissions. A map that dis-
plays the level of interference over the region of interest (ROI)
is called an interference cartograph and it can be one of the
layers of the REM [1]. An interference map can be captured
by combining measurements performed by different network
elements and may assist several tasks such as sensing and set-
ting primary exclusion region. Creating an interference map
requires measuring the received signal power at multiple lo-

cations in the ROI, which is impractical in dynamic scenar-
ios where the number and locations of measurements change.
However, in many applications, effective spatial interpolation
techniques can be used to generate an interpolated map from
a given number of sensor measurements and locations.

Several interpolation methods have been introduced for
obtaining interference maps from received signal strength
(RSS) measurements. The ambient RF power spectrum is
regarded as a random field, and the kriging method has been
used to estimate the spatial power spectral density (PSD) in
[2]. Kriging has also been adopted as a reliable spatial in-
terpolation scheme to generate an interference map [1]. An
iterative REM building process based on kriging interpolation
is presented in [3]. In [4], a performance comparison of krig-
ing, spline and a local interpolation technique, namely natural
neighbour interpolation, has been presented. It is shown that
the natural neighbour interpolation provides a level of per-
formance in terms of primary emitter localization and field
strength estimation efficiency comparable to that of effective
global techniques such as kriging. In [5], Delaunay triangu-
lation based interpolation techniques have been considered
for generating interference maps due to their convenience for
distributed implementation. Local information processing
techniques such as Delaunay based interpolation, require data
only from the neighbouring nodes, therefore they provide
advantages over the global techniques especially in ad hoc
networks where the network topology is affected by the local
changes for example due to mobility. In such cases it is more
efficient to perform local computations rather than imple-
menting network-wide updates. Besides, triangulation is a
generic tool that serves as a basis for many geometry-based
algorithms in wireless networks to enable local information
processing. Therefore the use of actual triangulation provides
a computationally attractive solution for the interference map
generation problem.

The accuracy of emitter location estimates obtained from
an interpolated interference map is usually poor compared
to more sophisticated localization techniques. However, a
coarse estimate obtained from the interference map can be
adequate to initialize more accurate localization algorithms
either to reduce computational complexity or to improve es-
timation accuracy. In this paper, we present a case where
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the knowledge acquired from a REM is further utilized for
reducing the complexity of an accurate emitter localization
technique. Specifically, we consider reducing the number
of iterations of the Metropolis-Hastings (MH) algorithm for
emitter localization. The performance of MH algorithm is af-
fected by several design parameters such as the selection of
proposal density and its parameters, number of iterations and
burn-in samples. Even though MH algorithm is guaranteed
to converge, the convergence may be slow. In this work, we
show that smart initialization of the MH algorithm improves
the convergence dramatically.

2. PROBLEM DEFINITION

We consider a secondary radio network consisting of a num-
ber of users deployed at known locations in a given ROI. We
assume that one primary user is active at any given time and
each secondary user measures the received power due to the
primary transmitter. In the considered scenarios, nodes are
communicating with their neighbours and form an ad-hoc net-
work. The network is assumed to be triangulated for network-
ing tasks and the triangulation is then utilized for generating
the interference map based on interpolation. The interpolation
techniques considered in this paper are nearest neighbour and
linear interpolation based on Delaunay triangulation[5]. The
coarse estimate obtained from the interference map initializes
the MH localization algorithm with the objective of reducing
the number of iterations.

3. PRIMARY EMITTER LOCALIZATION

In this section, we provide a brief introduction to two differ-
ent emitter localization approaches used in this paper. The
first approach is based on interference maps generated using
interpolation techniques whereas the second approach relies
on the MH-algorithm.

3.1. Localization using interference map

An interference map indicates the level of interference in a re-
gion of interest and it can be obtained by applying simple and
effective spatial interpolation techniques utilizing measured
power levels from distributed sensors and their locations [1].
Using this information, a secondary network can geo-locate
a primary transmitter based on the location of the maxima of
the map [4],[5].

In this paper, we consider Delaunay triangulation based
interpolation for generating interference maps. Delaunay tri-
angulation is frequently used for many networking tasks such
as routing and topology control and the use of existing trian-
gulation provides a computationally attractive solution for in-
terference map generation [5]. Among the Delaunay based in-
terpolation techniques, linear interpolation provides a level of
performance comparable to other more complex techniques
such as natural, cubic and quadratic interpolations [5]. On the
other hand, the nearest neighbour (NN) interpolation is the
least computationally complex technique but its performance

is significantly lower than the other triangulation based tech-
niques. In this paper, we consider linear and NN interpola-
tions due their lower complexity.

A Delaunay triangulation for a set of given nodes is a tri-
angulation of the set such that no node in the set is inside
the circumcircle of any triangle in the triangulation. Voronoi
decomposition is the dual representation of this triangulation
and partitions a plane into convex polygons such that each
polygon contains exactly one generating point and every point
in a given polygon is closer to its generating point than to any
other. The decomposition can be obtained by connecting the
centres of the circumcircles of the Delaunay triangulation. In
this work, the quick hull algorithm is used to construct Delau-
nay and Voronoi diagrams. Details of the quick hull algorithm
can be found in [6].

The NN interpolation algorithm computes the interference
map value at any given location based on the Voronoi decom-
position; specifically all the points inside a Voronoi cell take
the value of that Voronoi site. Linear interpolation algorithm
computes the map value based on the triangulation; the value
at a location inside a triangle is computed as a linear combina-
tion of the sensor measurement at the triangle vertices. More
information about generating interference maps using the De-
launay based NN and linear interpolations and their applica-
tion to primary emitter localization can be found in [5].

3.2. Localization Using MH

The Metropolis-Hastings (MH) algorithm is a Markov chain
Monte Carlo method for generating a sequence of random
samples from a probability distribution for which direct sam-
pling is difficult. The general idea of the algorithm is to use
a Markov chain that generates states depending on the likeli-
hood ratio of the states. The chain starts from a random state.
By using a proposal density Q(x′;x(t)), which depends on
the current state x(t), a new proposed sample x′ is generated.
This proposal is accepted as the next value by checking the
acceptance ratio η = min(1, P (x′)/P (x(t))) where P (x) is
the target distribution. The Markov chain is run for many it-
erations until the chain converges. The samples for which the
initial state is forgotten are discarded and known as burn-in
samples. The remaining set of accepted values of x represents
a sample from the distribution P (x). This algorithm works
better when the proposal density matches the shape of the tar-
get distributionP (x). Large sample theory states that the pos-
terior distribution of the parameters approaches a multivariate
normal distribution therefore a normal proposal distribution is
selected often in practice: Q(x′;x(t)) ∼ N(x(t),∆2). Here
∆ is the step-size and its value is important in obtaining an
efficient Markov chain. The search process to find a good pa-
rameter value is referred to as tuning. There is no general rule
for automatic tuning and off-line tuning may require extensive
experimentation.

The MH-algorithm as applied to emitter location estima-
tion problem is presented in Algorithm 1. The algorithm takes
the received power values at each sensor and generates sam-
ples from the posterior distribution. Here Tmax shows the
number of maximum iterations.
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Algorithm 1 M-H algorithm

Initialize emitter location, t← 0
repeat

Propose a new emitter location S∗

Evaluate η and sample u ∼ U(0, 1)
if u ≤ η then

Accept the proposed position

else

Keep the old position

end if

t← t+ 1
until t = Tmax

The expected a posteriori estimate of the emitter loca-
tion can be then found by averaging the samples generated
by the algorithm. More details about the MH-algorithm can
be found in [7].

4. SIMULATIONS

In all simulations in this section, one primary emitter and a
number of secondary users were placed in a 1km by 1km
square ROI. We assumed independent log-normal shadowing
of given dB spread and log-distance path-loss model with a
fixed path-loss exponent of 4. The performance results are
presented in terms of the root-mean square of the estimation
error:

RMSE =
√

E(x− x̂)2 (1)

where x and x̂ are the actual and the estimated location of the
primary emitter.

When an interpolation technique is employed in the sim-
ulations, a grid resolution of 10m is assumed.

4.1. Cramer-Rao Lower Bound

The Cramer-Rao lower bound (CRLB) of the localization er-
ror for RSS based geo-localization under log-normal shadow-
ing is given by [8]:

CRLB =
ln(10)

10

σ

γ
√
N

G (2)

where σ and γ are the shadowing spread and the path-loss
exponent, respectively, N is he number of sensors and

G =

√
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(3)

Here, τ and ρ are the averages of τk and ρk, τ2 and ρ2 are the

averages of τ2k and ρ2k, τk = cos(φk)
dk

, ρk = sin(φk)
dk

, τρ is the

average of τkρk, and φk is the angle between the vector em-
anating from the kth sensor to the emitter and the unit vector
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Fig. 1. Comparison of RMSE performances of interpolation
and MH-based localization techniques

in the positive direction of the real axis of the reference co-
ordinate system and dk is the angle and distance between the
emitter and kth sensor. Please note that the shadowing spread
is assumed to be constant for each emitter-sensor pair. As
seen from (2), the CRLB depends on the emitter-sensor ge-
ometry, i.e. each unique emitter-sensor placement results in a
different CRLB. Therefore a fixed emitter-sensor geometry is
used in the simulations where the performance of localization
techniques are compared to the CRLB. In one example, we
assumed that a primary emitter is located at the centre of the
ROI and 16 sensors are placed at the centres of 250 m by 250
m grid locations. The resulting CRLB is plotted in Fig. 1 for
shadowing spread values ranging from 1 to 12 dB.

The performances of the NN and linear interpolation
based localization techniques are also shown in Fig. 1 for
the same emitter-sensor geometry. In these cases the per-
formances at each shadowing spread value were obtained by
averaging over 1000 different realizations of the shadowing
noise. As seen from these curves, linear interpolation per-
forms slightly better than the NN interpolation based local-
ization; however both techniques perform poorly compared
to the CRLB.

Also shown in this figure is the performance of the MH-
based localization technique. The performance of the algo-
rithm was calculated using the exact same networks generated
in the previous simulations. The step-size of the MH algo-
rithm was set to 200 after a tedious fine tuning stage based
on extensive trial and error process. In each simulation, the
MH-algorithm was run for 10000 iterations and the first 1000
samples were discarded as burn-in samples. As seen from the
figure, MH-algorithm performance is significantly better than
the interpolation based localization techniques and its perfor-
mance is closer to CRLB especially at lower shadow spread
values.

3



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
60

65

70

75

80

85

90

Number of MH iterations

R
M

S
E

 [
m

]

 

 

∆=50

∆=100

∆=200

∆=400

∆=500

Fig. 2. RMSE performance versus number of MH iterations
for different step-sizes

4.2. Performance Analysis of MH-Algorithm

As shown in the previous section, the performance of the MH-
based localization algorithm is superior compared to the inter-
polation based localization techniques. However, the perfor-
mance of the technique is affected by several design param-
eters such as the selection of the proposal density and its pa-
rameters and the numbers of iterations and burn-in samples.
Even though the algorithm is guaranteed to converge asymp-
totically, improper selection of the parameters may slow down
the convergence leading to increased computational complex-
ity. Particularly, if the Markov chain is initialized with a value
far from the actual emitter location and the step size is small
then the chain will require large number of iterations to con-
verge. In order to investigate the effect of parameter selection
to the estimation error, we have simulated network scenar-
ios where a primary emitter and 20 sensors are placed ran-
domly chosen locations within the ROI. In these simulations,
we evaluated the performance of the MH algorithm in terms
of number of burn-in samples and iterations as well as the
value of the step-size. Fig. 2 shows the performance as a
function of number of MH iterations for different step-sizes.
As seen from this figure, the performance is affected by the
selection of step-size when the number of iterations is small.
The best performance is achieved at ∆ = 200. As the number
of iterations increases, the performance difference becomes
negligible.

Fig. 3 shows the performance of the MH algorithm in
terms of the number of burn-in samples for different step-
sizes. As seen from these figure, the number of burn-in
samples does not affect the performance significantly except
when the step-size is set to 50. In this case, at least 2000
burn-in iterations are required for the algorithm to converge.
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Fig. 3. RMSE performance versus number of burn-in itera-
tions for different step-sizes

4.3. Comparison of random and smart initializations

In Section 4.2, we have shown that location estimation accu-
racy of the MH algorithm is affected by the selection of design
parameters such as number of burn-in samples and step-size.
When these parameters are not set judiciously, the algorithm
needs to run a large number of iterations to converge. Our
claim is that the required number of MH iteration can be re-
duced without significant performance loss if the algorithm is
jump-started with an initial value obtained from the interfer-
ence map that the cognitive radio network has already created.

In order to support our claim, we ran simulations to
compare performances of random and smart initialized MH-
algorithms. In simulations, we randomly deployed secondary
nodes and a primary emitter within the ROI. Randomly ini-
tialized MH algorithm started at a location chosen arbitrarily
within the region whereas the smart algorithm started at the
location where the interference map achieved its maximum.
Interference maps were created using both NN and linear
interpolation techniques. We set the step-size of the proposal
density to 50, as this value was resulted in suboptimal per-
formance in simulations performed in Section 4.2. Note that
the optimal value of the step-size is not generally available
unless the algorithm is tuned-up in advance which requires
extensive off-line simulations. The reason for selecting a
suboptimal step-size in simulations is due to our desire to
compare the performances of both techniques under the worst
case scenario. In each simulation, MH algorithm was run
for 500 iterations and first 250 samples from these iterations
was discarded as burn-in samples. The expected a posteriori
estimate of the emitter was then obtained by averaging last
250 samples. The RMS of the location estimation errors were
given in Figures 4 and 5. Fig. 4 was obtained by simulating
10000 networks with 30 sensors for each dB spread value
ranging from 1 to 12 dB at 1 dB intervals to analyse the per-
formance under shadow fading. Similarly, Fig 5 was obtained
by simulating 10000 networks as sensor number was changed
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Fig. 4. RMSE performance comparison of localization tech-
niques (N = 30)
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Fig. 5. RMSE performance comparison of localization tech-
niques (σ = 6)

from 20 to 50. The spread of shadow fading was set to 6 dB
in these simulations.

As seen from Figures 4 and 5, randomly initialized MH
performs poorly because the algorithm cannot converge due
to insufficient number of iterations. In this case, the perfor-
mance is even worse than the linear interpolation based es-
timation. When initialized with rough position information
provided by the interference map, the MH algorithm achieves
significantly better performance even when the number of it-
erations is small. The performance of the algorithm is the
same for both NN and linear interpolation initialization. Even
tough the performance of the NN interpolation itself is poorer
than the linear interpolation scheme, the performance of the
MH is similar for both NN and linear interpolation initial-
ization which shows that the algorithm is insensitive to the
accuracy of the initial estimate.

5. CONCLUSIONS

In this paper, we show that localization performance of in-
terference maps obtained using low complexity interpolation
techniques are not accurate. Even though the MH algorithm
provides more accurate primary emitter location estimates, it
takes large number of iterations to converge if its parameters
are not tuned in advance. However, when initialized with the
knowledge fed-back from the interference map, the MH algo-
rithm converges significantly faster even without parameter
tuning.

A natural extension of this study is to consider the case
where there are unknown number of multiple primary users
with different transmit power levels using reversible jump
Markov chain Monte Carlo techniques.
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