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ABSTRACT 

 

An unsupervised track classification approach is applied to 

sonar multistatic multitarget tracking. Appropriate 

discriminative and aggregative features are derived from 

beamformed and normalized matched-filtered data as 

recorded from a linear array towed behind an AUV. A 

clustering algorithm based on Hierarchical Dirichlet 

Processes is proposed for unsupervised classification of 

tracks. Overall improvement of target tracking is 

demonstrated via the Optimal Subpattern Assignment metric. 

 

Index Terms— clustering, hierarchical Dirichlet 

processes, tracking, infinite HMM 

 

1. INTRODUCTION 

 

In the context of anti-submarine warfare (ASW) one of the 

central goals of autonomous underwater vehicles (AUVs) is 

detection and tracking of underwater targets. Traditionally, in 

an active sonar framework, formation of tracks is based on 

contacts obtained from a detection procedure. In littoral 

environments signal reflection and scattering occurs due to 

objects like rocks, soft bottom, underwater and surface 

vehicles. A tracker typically does not discriminate among 

different detection types: all contacts, even those that are 

clutter, can form a track.  

     A question we are trying to answer is whether we can 

improve on existing acoustical data partitioning aimed at 

echo-repeater detection and tracking, using extra data taken 

at beam-directions next to the beam-directions associated 

with the detections. 

     Existing signal detectors are constrained by relatively 

short duration of the source waveform (e.g. one second) that 

in turn constrains the number of independent data points 

available for target detection at independent beam directions. 

On the other hand, the possible non-stationarity of reference 

time-series constrains the size of time-window available for 

background clutter estimation. Such data scarcity causes 

significant errors in required data partitioning. While many 

works try to improve the solutions leading to data partitioning 

based on statistical analysis of time snippets obtained at the 

beam of detection, in this work we extract information from 

time series available at neighboring beams of detection and 

postpone the final partitioning until the track termination.  

     There are a number of reasons why information about 

clutter and target can be available at bearings next to the 

bearing of detection. For example while clutter could 

contribute significantly to signal energy at neighboring 

beams, so does imperfect spatial filtering of recorded signal 

or change of array shape not accounted for in beam-forming. 

Resolving the respective causes via direct modeling may be 

problematic under constraints of real-time processing. 

Instead, we try to estimate relative variability of sets of 

normalized data amplitudes around detections by introducing 

the Maximum Mean Discrepancy (MMD) test in the next 

section, and incorporate the results of this test into a data 

clustering model. 

       Another reason for using the MMD test is to perform a 

many-to-one mapping invariant to probability distribution 

function (pdf) of signal envelope amplitudes. Such a mapping 

is motivated by requirements of field sampling. For example, 

the probability function incorporating information about 

target aspect dependency is not properly sampled when 

detections of a target represent samples from just one rather 

than all target aspect angles. 

    Grouping and analyzing the distributions of MMD 

aggregative mapping along tracks is still relatively complex 

for real-time implementation. Discretizing the results of 

MMD mapping using a small dictionary, and estimating the 

entropy of the resulting, we end up associating each detection 

with a discrete scalar that has only a limited number of 

possible values. Such compression decreases the 

computational complexity of the consequent calculations and 

meets the most stringent constraints of underwater acoustic 

communications. 

 Assuming a discrete aggregative discriminative feature – 

construction of which is described in the next two sections – 

one can define for it a probabilistic generative model. And 

armed with such a generative model, distributions of 

underlying latent model parameters can be inferred, these 

then used to classify sets of detections, grouped via tracking 

or otherwise. 
The paper is organized as follows. In sections 3-5 we give 

the description of two Bayesian generative models based on 

Dirichlet Processes (DP). To evaluate the impact of 
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unsupervised track classification on tracking performance, 

we use the Optimal Subpattern Assignment (OSPA) tracking 

metric [2], which is described in section 6. Finally we show 

the results of track classification on data collected in the 

framework of active bi-static measurements during Generic 

Littoral Interoperable Network Technology sea trials in 2011 

(GLINT11). 

 

2. CONTACT DETECTION IN BEAMNUMBER BI-

STATIC TRAVEL TIME SPACE 

 

In this work, detections are formed using matched-filtered 

beam-formed normalized data. A typical display of 

normalized data is shown in Figure 1. White diamonds 

represent contacts with the five highest signal-to-noise (SNR) 

values. For purposes of illustration, we surround one of them 

by five “reference” rectangles, one at the center, two in along- 

and two in across-beam directions. These rectangles 

correspond to the data windows, divided into lower and upper 

cells, used to form data sets tested for similarity using the 

statistical test described below. Note the anisotropy of the 

energy distribution around the contacts, and its variation from 

contact to contact.  

 

 

Figure 1: A typical display of normalized data scan with 4 

detections (white diamonds), and 5 MMD test areas 

(rectangles where horizontal middle line separates two sets, 

here enlarged for better visibility) centered at one of the 

detections. 

 The Maximum Mean Discrepancy (MMD) test [3] is a 

non-parametric test defining a distance between a pair of 

probability measures embedded into reproducing kernel 

Hilbert spaces (RKHS). Such embedding allows comparison 

of the respective probability measures based on the distance 

between the respective embeddings without the explicit 

estimation of the probability measures [2, 4].  

 The MMD test is defined by a class of smooth functions 

F, defined in a RKHS 

 

𝑀𝑀𝐷[𝐹, 𝑝, 𝑞] ≔ sup
𝑓∊𝐹

(𝐸𝑥~𝑝[𝑓(𝑥)] − 𝐸𝑦~𝑞[𝑓(𝑦)]) (2.1) 

 

where 𝐸𝑥~𝑝[𝑓(𝑥)]and 𝐸𝑦~𝑞[𝑓(𝑦)] denote the expectations 

under the distributions p and q, respectively. This class must 

be “rich enough” so that the outcome of this test is positive if 

and only if probabilities p and q underlying two data sets are 

equal [3]. The unit balls (i.e. the sets of all vectors with norm 

less than or equal to one) in characteristic reproducing kernel 

Hilbert spaces satisfy this property and can be used to 

produce the empirical estimate of the MMD test that 

converges quickly to its expectation with the increase of 

sample size. The computational cost of the MMD test is 

O(m+n)2 time, where n and m correspond to the number of 

samples of the first and the second datasets, respectively. 

 We apply the Maximum Mean Discrepancy test 

(henceforth dissimilarity) on a pair of interleaved bearing-

time cells in a time-bearing (TB) window (TBW) with a 

predefined non-dimensional range �̂� = ⌊𝑓𝑠𝑅/(2𝑐)⌋, (where 

𝑓𝑠 is the normalised data sampling frequency, R is the 

expected length of target, and c is sound speed) and number 

of beams (�̂� = 3) support. We apply this test to quantify 

dissimilarity of the interleaving TB cells.  

 An empirical biased estimate of MMD defined for the pair 

of TB cells �̂� and 𝑍 in the TBW can be written as 

 

𝑑[�̂�, 𝑍] = [
1

𝑀2
∑𝑘(�̂�𝑠, �̂�𝑜)

𝑀

𝑠,𝑜

−
2

𝑀𝑁
∑𝑘(�̂�𝑠, �̃�𝑜)

𝑀,𝑁

𝑠,𝑜

+ 

1

𝑁2
∑ 𝑘(�̃�𝑠, �̃�𝑜)
𝑁
𝑠,𝑜 ],   (2.2) 

 

where 𝑘(�̂�𝑠, �̃�𝑜) is a kernel function, �̂�𝑠 and �̃�𝑜 are vectors of 

the TBW cells, and N and M correspond to the numbers of 

vectors in the respective two adjacent cells of the TB window. 

We used the Gaussian radial basis function 𝑘(�̂�𝑠, �̃�𝑜) =

exp(−
‖�̂�𝑠−𝑧𝑜‖

2

𝜎2
), where 𝜎2 is a scaling parameter that after 

some testing was set to 0.01. 

Normalization of  �̂�𝑠 data cells is given by: 

�̂�𝑠 =
𝑧𝑠

∑ ∑ ‖𝑧𝑖,𝑗‖
𝑁
𝑗

𝑀
𝑖

 

where M and N are the number of data points in the TBW in 

the range and bearing direction respectively i.e. 𝑁 = |�̂�𝑖| =

|�̃�𝑗| and 𝑀 = |�̂�| = |𝑍|. Note that �̂� = {�̂�1, �̂�2, �̂�3}, 𝑍 =

{�̃�1, �̃�2, �̃�3}, and �̂�𝑖 and �̃�𝑗 are time snippets.  

    Thus the difference in signal spread required for the 

classification is estimated at a low computational cost using 

only three grid points in each bearing and range direction. 

That is, by moving the TB window relatively to �̂�𝑖,𝑗 in range 

space at a constant bearing 𝑏𝑗 and in bearing space at a 

constant range 𝑟𝑖, we obtain two sets of dissimilarity indexes 

𝑑𝜏 = {𝑑𝑖−1,𝑗𝑑𝑖,𝑗𝑑𝑖+1,𝑗} and 𝑑𝑏 = {𝑑𝑖,𝑗−1𝑑𝑖,𝑗𝑑𝑖,𝑗+1}. 

 Each of the sets of the dissimilarity indexes of a single 

contact can be used to estimate a three-bin histogram: 
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𝑝(𝑑𝑟) =
𝑊𝑟

𝑀
   (2.3) 

where Wr is the number of dr values (counted either in {di-1,j, 

di,j, di+1,j} or in {di,j-1, di,j, di,+1j}) falling within the r-th bin, 

and M=3 is the overall number of values used in the 

histogram estimation. A probability mass function in the 

range and the bearing directions can be estimated from the 

respective normalised histograms such that  

∑ 𝑝𝜏(𝑑𝑟) = 1𝑀
𝑟=1 ,  (2.4) 

∑ 𝑝𝑏(𝑑𝑟) = 1𝑀
𝑟=1 .  (2.5) 

The entropy at constant bearing can be then estimated as: 

ℎ𝜏 = −∑ 𝑝𝜏(𝑑𝑟) log(𝑝𝜏(𝑑𝑟))
𝑀
𝑟=1 . (2.6) 

Similarly the entropy at constant range can be then estimated 

as: 

ℎ𝑏 = −∑ 𝑝𝑏(𝑑𝑟) log 𝑝𝑏(𝑑𝑟)
𝑀
𝑟=1 .  (2.7) 

Finally, the entropy difference, which is the final feature 

used below for clustering and classification, is given as 

∆ℎ = ℎ𝜏 − ℎ𝑏.  (2.8) 

 

3. THE SAMPLING STRATEGY 

 

The coupled sample sets of high dimensional vectors of 

normalized data snippets with the support shown in Fig.1 (the 

upper and lower rectangles respectively) can be seen as 

random samples from a Dirichlet process. The statistical test 

performed on these samples, having multinomial outcome eq. 

(2.3)-(2.5), maps and aggregates high-dimensional samples 

respectively onto- and in 3D space.  

 The entropy of the probability mass function eq. (2.6)-

(2.7) estimated on three bins using three samples is again a 

three-dimensional multinomial. Therefore the entropy 

difference estimated between across- and along-beam 

directions, is a seven dimensional multinomial. One can 

expect that entropy difference can be used to discriminate the 

reflecting objects that have different signal spread in across- 

and along-beam directions. 

 Having performed data discriminative aggregation, we 

may view a track as a set ∆ℎ1:𝑁 = {∆ℎ1, ∆ℎ2, … , ∆ℎ𝑁}. Note 

that given the exchangeability assumption the order of 

detections can be ignored. We model the distribution of ∆ℎ 

as a mixture, where each component specifies a multinomial 

over ∆ℎ, which is shared among different tracks. We wish to 

find a probabilistic model that places significant probability 

not only over the observed but also over future unobserved 

tracks if they are “similar” to the tracks already observed.  

  

4. CHOICE OF A TRACK CLASSIFICATION 

MODEL  

 

4.1. Latent Dirichlet Allocation 

 

A parametric approach to the track classification problem can 

be provided by Latent Dirichlet Allocation [5]. Initially this 

approach has been proposed for the probabilistic description 

of documents. We identify the multinomial features as words 

drawn from a vocabulary of seven words. “Documents” are 

the tracks that consist of 𝑁 estimated multinomial features 

∆ℎ1:𝑁. Finally “topics” are virtual reflecting objects (VRO). 

LDA can be adopted to describe track feature generation.  

 According to LDA, the proportions of the mixture model 

are drawn on track-specific basis from a Dirichlet 

distribution. Each detection (i.e. feature) is an independent 

draw from a mixture model conditioned on the mixing 

proportions. 

 Uncertainty in the number of mixture components can be 

addressed using the framework of hierarchical collections of 

Dirichlet Processes (HDP) [6], which can be seen as the 

nonparametric version of LDA where the well-known 

clustering property of DP is applied via placing 

nonparametric prior on the number of mixture components. 

  

 

4.2. Bypassing the track clustering problem 

 

If the LDA is used for track classification then track 

clustering problem needs to be addressed. Due to sharing of 

mixture components in the HDP framework [6], a different 

feature grouping approach, not just kinematic tracking, can 

be used for training of a track classifier.  

 We sort detections according to their SNR and form a 

single set of detections that includes L contacts from all 

experiments collected during GLINT11: ∆ℎ1:𝐿 = {∆ℎ𝑗}, 𝑗 =

1,… , 𝐿. Here j is a detection count such that 𝑗 = 1 

corresponds to the contact with the highest SNR of the scan 

obtained at time𝑡1, 𝑗 = 2 corresponds to the highest SNR of 

the scan at time 𝑡2, 𝑗 = 𝑛1 corresponds to the contact with the 

highest SNR at the last scan of experiment one, 𝑗 = 𝑛1 + 1 

corresponds to the contact with the highest SNR of the first 

scan of experiment two and so on, until all contacts of all 

experiments with the highest SNR have been included. This 

cycle is repeated again until the contacts with the second, the 

third, up to the twentieth SNR have been included in the set, 

so that 𝐿 = ∑ 𝑛𝑖
𝑂
𝑖=1 , where O is the number of field 

experiments, and 𝑛𝑖 is the number of scans of the ith 

experiment.  

 Now the HDP Hidden Markov Model can be used. 

 

5. THE INFINITE HIDDEN MARKOV MODEL 

 

The HMM can be seen as a set of mixing models, one for each 

latent state, and in our case, one for each target class. 

 A DP mixture model can be used to learn a mixture model 

with a countably infinite number of mixture components. 

However, to accommodate a countably infinite number of 

mixture models one needs a mechanism to couple the 

respective DP models [6]. Such a mechanism is the 

hierarchical DP and the resulting HMM model is called HDP-

HMM or infinite HMM.  

 Coupling across transitions can be obtained using 

hierarchical Bayesian formalism by introducing the Dirichlet 

priors with the shared parameters 𝛽𝑘, and a higher level prior 

𝛾, and a base measure H [6]: 𝜋𝑘~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼, 𝛽), 
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𝛽~𝐺𝐸𝑀(𝛾), where 𝜋𝑘 corresponds to the probability of state 

k, 𝛽 is generated via stick-breaking construction (GEM 

denotes stick-breaking process [7]).  

 The hierarchy of DPs is given by the following equations 

[6]: 𝐺0~𝐷𝑃(𝛾, 𝐻), 𝐺𝑗~𝐷𝑃(𝛼, 𝐺0). Stick breaking 

presentation gives 𝐺0 = ∑ 𝛽𝑘′
∞
𝑘′=1 𝛿𝜃𝑘′ 𝐺𝑗 = ∑ 𝜋𝑘𝑘′

∞
𝑘′=1 𝛿𝜃𝑘′ 

where 𝜋𝑘𝑘′ is the transmission (or mixing) parameter, and 𝜃𝑘′ 
is the distribution emission parameter. 𝜋𝑘|𝛽𝑘~𝐷𝑃(𝛼, 𝛽), 

𝜙𝑘|𝜃𝑘~𝐷𝑃(𝐻), 𝑠𝑡|𝑠𝑡−1~𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜋𝑠𝑡−1), and 

ℎ𝑡|𝜙𝑠𝑡~𝐹(𝜙𝑠𝑡), 𝑠 = {𝑠1, … , 𝑠𝑛} is the state sequence, 𝐹(𝜙𝑠𝑡) 

denotes the distribution of ∆ℎ𝑡 given the factor 𝜙𝑠𝑡. 

 Inference of the HDP-HMM can be carried out by a Gibbs 

sampler, which converges to the true posterior. The 

implementation in its current form suffers from “slow mixing 

behavior” when applied to strongly correlated time series. An 

approach, coined by the authors the beam sampler [8], 

overcomes the problem of slow mixing. 

 The beam sampler introduces an auxiliary variable 𝑢𝑡 
such that conditioned on u the number of trajectories in the 

HMM is finite. As a result, such an approach adaptively 

truncates (i.e. only the paths that have large than 𝑢𝑡 transition 

matrix values are used) the infinitely large transition matrix, 

and makes possible to use dynamic programming in the 

forward calculation.  In the backward calculation the whole 

sequence is re-sampled. 

 The basic steps of beam-sampler calculation are given by 

the following block-scheme [8]  

 Initialize hidden states and parameters 

 While (enough samples) 

a) Sample 𝑝(𝑢|𝑠): 𝑢𝑡~𝑢𝑛𝑖𝑓𝑜𝑟𝑚 (0, 𝜋𝑠𝑡−1,𝑠𝑡
) 

b) Sample the whole trajectory of 𝑠 in two steps: 

first, forward filtering, second, backward 

sampling. 

a.  Initialize DP, 𝑝(𝑠𝑜 = 1) = 1 

b. For each t=1,...,T 

𝑝(𝑠𝑡|∆ℎ1:𝑡 , 𝑢1:𝑡) ∝
𝑝(∆ℎ𝑡|𝑠𝑡) ∑ 𝑝(𝑠𝑡−1|∆ℎ1:𝑡−1, 𝑢1:𝑡−1)𝑠𝑡−1:𝑢≤𝜋𝑠𝑡−1,𝑠𝑡

    

 Sample T 𝑝(𝑠𝑇|∆ℎ1:𝑇) 
c.  Sample t=T-1,...,1 

  𝑝(𝑠𝑡|∆ℎ1:𝑇) ∝
𝑝(𝑠𝑡+1|𝑠𝑡)(𝑠𝑡|∆ℎ1:𝑡)  

 Resample 𝜋, 𝛾, 𝛼|𝑠 using dynamic programming. 

 Finally, tracks can be classified using: 

 

𝑝(𝑠𝑡 = 𝑘|∆ℎ1:𝑡) = 𝑝(∆ℎ𝑡|𝑠𝑡)∑ 𝑝(𝑠𝑡|𝑠𝑡−1)𝑝(𝑠𝑡−1|∆ℎ1:𝑡−1)

𝑠𝑡−1

 

argmax
𝑘

𝑝(𝑠1:𝑇 = 𝑘|∆ℎ1:𝑇) =∏𝑝(𝑠𝑡 = 𝑘|∆ℎ1:𝑡)

𝑇

𝑡=1

 

 

6. TRACKING PERFORMANCE METRIC 
 

OSPA [2] compares two sets of tracks - the set of tracks of 

targets (usually given by the target’s own navigation system, 

here called ground truth) X, and the set of tracks Y estimated 

by the tracking algorithm. OSPA does not require explicit 

labelling of the tracks.  

 OSPA combines minimum track-to-target distance with 

the scaled difference of cardinality of sets of tracks |Y| and 

targets |X|. Removal of a subset of tracks �̂� such that |�̃�| <
|𝑌|, where �̃� = 𝑌\�̂�, and �̂� ⊂ 𝑌 based on some track 

labelling approach, we are guaranteed to lower the cardinality 

of Y, but we are not guaranteed to reduce the OSPA metric. 

Therefore one can expect that the overall improvement of the 

OSPA metric evaluated based only on labelled tracks as 

opposed to the OSPA results using all tracks will indicate 

usefulness of the applied labelling. 

 

 

Figure 2: Sea trial 2011-09-03. Output of tracker and 

classifier. Legend: Coastline (black thick), AUV trajectory 

(blue), ER trajectory (black), rejected tracks (red), classified 

tracks (thick colored lines). 

 
7. RESULTS  
 

The tracking classification results are shown in figures 2-4. 

The tracks not classified (or rejected by the classifier) are 

shown in red. The tracks with a probability of classification 

exceeding 0.95 are numbered and indicated by thick colored 

lines. The colors span linearly on red-green-blue light scale, 

scaled by a number of classes i.e. the IHMM states. Black 

thick, and blue lines, and black line with crosses correspond 

to the coastline, the AUV track, and the echo-repeater (ER) 

track respectively. The yellow-filled diamond corresponds to 

the position of the static source. The only difference between 

figures 2 and 3 is that while in the first case all tracks are 

shown, in the second case the tracks that remained 

unclassified (the red tracks in fig. 2) have been removed. In 
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these figures, one can see that obviously the track colored in 

green corresponds to the ER.  

    Fig. 4 quantifies tracking performance using the OSPA 

metric. The top and middle graphs correspond to the two 

components of OSPA, minimum target-track distance and the 

number of tracks (offset by one) estimated at any given scan 

time respectively. The lines correspond to the OSPA metric 

components (the top and middle panels) and OSPA metric 

(bottom panel), estimated for all tracks (A, blue line), for all 

classified tracks (AC, black line), and for the class believed 

to correspond to the ER (ACS, red line). The respective lines 

are shown only when the respective tracks were present and 

their distance was below the maximum distance threshold on 

6 km.  

 

 
Figure 3: Sea trial 2011-09-03. Equal to Figure 2 but without 

the unclassified tracks. Legend: Coastline (black thick), AUV 

trajectory (blue), ER trajectory (black), classified tracks 

(thick colored lines). 

 

8. DISCUSSION AND CONCLUSIONS 

 

As opposed to the problem of kinematic tracking, track 

classification has increased complexity, which is required 

when one needs not just to improve tracking performance in 

terms of track duration and accuracy but also needs to know 

what kind of object has been tracked. In this work we have 

tried to mimic the feature generation process, used in the 

clustering models, via a feature construction approach. 

Namely, we have performed two steps of feature aggregation 

while still discriminating between targets of interest and other 

targets, which in our view provides better grounds for using 

the assumptions underpinning the unsupervised HDP 

clustering. The presented Bayesian approaches provide a 

consistent way to incorporate uncertainty into a hierarchy of 

parameters governing track classification. A degree of feature 

aggregation and discrimination should be a balance between 

the amount of non-redundant data and the requirements of 

target classification. Although the results presented in this 

work have already been extensively tested on field data 

collected in a number of cruises, improvement may be 

achieved with online classification, which is an interesting 

future topic.  

 
Figure 4: Sea trial 2011-09-03. Top plot: distributions of track 

to target minimum distance. Middle plot: number +1 of active 

tracks. Bottom plot: OSPA metric. 
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