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ABSTRACT 

 

Facial expression recognition depends on the detection of a 

few subtle facial feature traces. EMFACS (Emotion Facial 

Action Coding System) is a taxonomy of face muscle 

movements and positions called Action Units (AU) [1]. AUs 

can be combined to describe complex facial expressions. 

We propose to (1) deconstruct facial expressions into face 

regions, grouping AUs by their proximity and contour 

direction; (2) recognize facial expressions by combining 

sparse reconstruction methods with face regions. We aim at 

finding a minimal set of AU to represent a given expression 

and apply l1 reconstruction to compute the deviation from 

the average face as an additive model of facial micro-

expressions (the AUs). We compared our proposal to 

existing methods on the CK+ [2] and JAFFE datasets [3]. 

Our experiments indicate that sparse reconstruction with l1 

penalty outperforms SVM and k-NN baselines. On the CK+ 

dataset, the best accuracy (89.8%) was obtained using sparse 

reconstruction. 

 

Index Terms— facial expression recognition, sparse 

reconstruction, Gabor wavelets 

 

1. INTRODUCTION 

Ekman et al. [1] proposed the Emotion Facial Action 

Coding System (EMFACS). This system identifies seven 

basic facial expressions: anger, contempt, disgust, fear, 

happiness, neutral, sadness and surprise. In addition to this 

list of expressions, EMFACS also defines a set of rules 

relating a facial expression to a set of AUs. 

 Traditional facial expression recognition systems rely on 

an initial feature extraction step followed by a classification 

algorithm. Previous approaches for representing facial 

features have exploited global contours [3] and small binary 

patterns [4]. Both approaches do not explicitly consider the 

AUs positions. In contrast, EMFACS represents a facial 

expression as the articulation of the various face AUs. Most 

previous approaches exploring AUs also rely on a manual 

fiducial points alignment step [5]. 

 In this article, we formulate facial expression recognition 

as a signal reconstruction problem of different face 

components. We divide the face into regions where the most 

salient AUs are more active using Global Gabor filters and 

k-means clustering. In these regions, we apply a set of Local 

Gabor filters to detect the face contours. With this approach, 

our features combine the advantages of explicit AU analysis 

and contour-based analysis methods. The classifier 

determines the facial expression by computing the lowest 

reconstruction error with a dictionary of (labeled) facial 

expression Local Gabor Moments.  

 In the next section, we discuss related work. Section 3 

describes face region computation. Section 4 presents the 

facial expression recognition algorithm. The evaluation 

process is discussed in section 5. 

2. RELATED WORK 

Facial expression representation tackles the decomposition 

of an expression into its fundamental elements. In this paper 

we use the Facial Action Coding System (FACS) [1] to 

identify facial expressions. The FACS primary goal was “to 

develop a comprehensive system which could distinguish all 

possible visually distinguishable facial movements” [1]. 

EMFACS is an index of AU. An AU is an individual action 

that humans are able to distinguish, that can be performed 

by one or more muscles of the face. EMFACS combines 

AUs into seven universally recognizable expressions: anger, 

contempt, disgust, fear, happiness, sadness and surprise. We 

chose FACS because it is widely used and there are facial 

expression datasets labeled according to the EMFACS 

methodology [6], such as the Extended Cohn-Kanade (CK+) 

[2] and JAFFE [7].  

 There are two main approaches for facial feature 

extraction: geometry-based and appearance-based. 

Geometry-based methods rely on the shape and position of 

facial components like nose, mouth, eyes and brows to 

create feature vectors, [5]. Appearance based methods apply 

contour analysis filters like Gabor wavelets or Local Binary 

Patterns (LBP) to extract contour features from the face 

image. Banks of Gabor filters are widely adopted for facial 

expression recognition [8]–[10]. 

 One of the earliest works [3] in facial expression 

recognition applied Gabor wavelets and Linear Discriminant 

Analysis on the JAFFE dataset . Shan et al. [4] popularized 

Local Binary Pattern features for facial expression 



recognition. With an SVM classifier they achieved of 88.4% 

precision on the CK+ dataset. The combination of Gabor 

and SVM achieved a precision of 86.9%. Shan et al. 

concluded that the extraction of LBP features is faster than 

Gabor wavelets and more resilient to face images with low 

resolution. Besides Gabor wavelets, Local Binary Patterns 

and Aspect Appearance Models (requiring proper key-point 

registration) many different classifiers are proposed in the 

literature. Littlewort et al. proposed Gabor analysis and 

Support Vector Machines (SVM) [8]. Tian et al. were 

among the first to model the temporal dynamics of facial 

expressions [11]. Moriyama et al. addressed the same task 

with Hidden Markov models [12]. A thorough review can be 

found in Tian et al. [13]. More recently, sparse 

representation for face recognition has been proposed by 

Wright et al. [14]. A dictionary of face pixels (without any 

transformation) is used to reconstruct a subject’s face. They 

suggest that as long as the feature space is large enough to 

represent the original space a regression approach with 

proper regularization is adequate for face recognition. This 

triggered a series of other works following similar methods. 

Zhang et al. [15] applied compressive sensing and sparse 

representation to create a robust facial expression 

recognition algorithm. Other authors have pursued similar 

approaches for facial expression recognition [16] or face 

recognition robust to facial expressions variations [17]. In 

contrast to previous approaches, we propose to recognize 

facial expression as a regression problem of AU regions, 

more specifically, sparse reconstruction with localized 

analysis of AU regions. 

3. LOCALIZED GABOR-FILTER MOMENTS 

Action Units (AU) were identified as the muscular basis 

actions that produce a facial expression. They have been 

studied for their ability to associate a facial expression to 

well identified face key-points (basis muscles). These facial 

muscle actions are perceived as the intended expression by 

the visual cortex of the human brain. Since Gabor filters can 

model base perception functions of the human visual 

system, they have been widely used in facial expression 

recognition. In this section, we propose to merge these two 

ideas and integrate the localized analysis of Action Units 

and the frequency decomposition provided by Gabor filters. 

3.1 Gabor filter-bank 

Combinations of Gabor filters, are widely applied in the 

facial expression recognition literature [8][9] because of 

their natural ability to detect facial contours (i.e., eyes, nose, 

mouth, brows and wrinkles), and filter out most of the 

existing noise [10]. 

 To extract information concerning the face contours and 

expression traces, several Gabor filters at different 

orientations and scales will capture the different details of a 

facial expression. This allows building a dictionary of facial 

traits and the corresponding intensity. Thus, a Gabor filter is 

computed as the convolution     (   )  ∬  (     )  

   (          )        where I is the face image and 

    is the Gabor filter with scale   {       } and 

orientation   {                        }. Dictionaries with 

this configuration have been found to work well on a 

number of domains, namely, facial expressions recognition 

[10] and image retrieval [18]. This filter is applied to the 

face image to detect facial traces with a given orientation 

and scale. 

3.2 Robust features 

Since we aim at inferring a facial expression automatically 

and without any human intervention, we cannot rely on 

approaches that manually register the position of facial key-

points on an image. In this section, we detail how to 

improve feature robustness to poor alignment and subject 

variations. 

3.2.1 Localized Gabor-filter moments 

 Instead of tracking each AU point, we propose a 

localized analysis of face regions grouping nearby AU. By 

inspecting the FACS data, we decomposed the face image, 

according to the observed per-expression variations. This 

way, each face region groups a set of AU, and a local 

analysis of each region allows a specific assessment of the 

face traits in a particular direction. This renders a greater 

sense of locality to the Gabor filters output. 
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Figure 1. Creation of the expression regions. The 

represented expressions are anger, fear and surprise. 

Our objective is to identify the face regions where the 

dominant changes occur in each facial expression. The 

facial expression sequences used to create the features are 

from the CK+ dataset [2]. We extracted the first (neutral 

expression) and last (peak expression) images from the 

dataset. Initially, the frame with the peak facial expression 

was taken from the sequence (Figure 1, Column 2) and 

passed through the Gabor filters. To identify the regions 

with the dominant changes, we subtracted the Gabor filters 

output of the neutral image (Figure 1, Column 1). The 

process was repeated for all expression images and an 



average Gabor filter output difference was taken per 

expression (Figure 1, Column 3).  

 A k-means clustering is then applied to the energy 

difference image. The number of clusters k is estimated   

using the techniques described in [19]. The detected clusters 

are present in Figure 1, Column 3 and 4. Lighter colored 

regions represent bigger facial expression changes. The 

dictionary of Gabor filters is applied to the entire face image 

and the mean and variance of the filters output energy are 

computed for the clusters regions. 

 The output of each filter is represented by its mean and 

variance to improve the features robustness to variations in 

the face position and alignment. Since there are six regions 

and twenty-four filters (four scales, six orientations), the 

dimensionality of the robust representation is 288. Thus, a 

facial expression j is represented by the vector    

(           ) where        (        ) and 

              (        ). These features provide a robust 

measure of the face contours surrounding a group of AU 

key-points. The localized measure of simple statistics (mean 

and variance) reduce the effect of poor face alignment. 

3.2.2 Intra-subject normalization 

To increase the relation between Gabor image and facial 

expressions, a proper normalization must be performed. 

When a facial expression occurs, the different muscles must 

act accordingly and position themselves at some distance 

from its neutral position. We argue that facial expressions 

are best represented as the difference between the subject 

neutral expression and the current expression. Thus, the 

neutral face feature vector is subtracted from the facial 

expression feature vectors. The sparse reconstruction 

algorithm uses the resulting vector. 

 In some situations, it might be easy to obtain the 

individual’s neutral face, while in other situations the 

individual’s average face might be easier to obtain. We 

compared these two scenarios and a third one where the 

global average face is the normalizing vector. 

4. SPARSE RECONSTRUCTION OF  

FACIAL EXPRESSIONS 

Let us consider a set of k training face images, where each 

image i contains a facial expression label    {           

                                    }. We also define  

   [ 
 
  

 
  ]  

as the dictionary of Localized Gabor Moments (of 

dimension m) of all k training examples, where    

(           ) . 

 One can reconstruct an unseen face image feature vector 

  , as a linear combination of a set of several facial 

expressions, i.e., the columns of the dictionary D. The 

reconstruction algorithm gets more support data by 

reconstructing a facial expression from several images 

belonging to all expressions. This intuition relies on the fact 

that micro-expressions are present in all expressions, 

making it easier to use support data from a different facial 

expressions that share a common micro-expression in some 

particular AU. This helps the reconstruction algorithm in 

minimizing the global representation error. Figure 2 

illustrates the reconstruction coefficients of an example 

image depicting a surprise facial expression. The figure 

illustrates the contribution of each dictionary component to 

the sparse reconstruction of the image test face. The 

different colors indicate the label of the dictionary 

components. The image is classified with the facial 

expression whose dictionary components minimize the 

reconstruction error. 
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Figure 2. Reconstruction coefficients of an example 

image labeled with the surprise facial expression. 

 Formally, given the unseen face image feature vector   , 

we wish to minimize the difference between this feature 

vector and the      linear combination, while concentrating 

the    non-null components on a few dimensions. This can 

be cast as the following optimization problem: 

         
  
 ‖       ‖ 

   ‖  ‖  

   is the sparsity penalty weight for the reconstruction. 

The l1 norm is particularly important, because it aims at 

maximizing the number of null entries in the    vector, thus, 

it tries to minimize the error by concentrating its 

representation on a few columns of the dictionary. We 

implemented the Fast Iterative Thresholding Algorithm 

(FISTA) optimization algorithm [20] to handle the l1 

regularized minimization problem. FISTA, is an algorithm 

that solves the above optimization problem by taking an 

unconstrained approximation of the original problem. 

FISTA has its roots in the iterative soft thresholding 

algorithm (ISTA). ISTA iterates by solving the 

unconstrained problem at a given point using a thresholding 

function and then taking a gradient step from the local 

optimal point. FISTA improves the ISTA algorithm by 

using an improved method to determine the next point at 

which the minimization step is evaluated that guarantees 

faster convergence. 

 To classify a face image with its facial expression, the 

contribution that each facial expression provides to the 

minimization of the error is the selected expression. The 

label expression    of the vector    is given by the facial 



expression that most contributed to the minimization of the 

representation error, i.e., 

         
 
 ‖          ‖ 

where    is an indicator matrix containing all elements set to 

zero except for the elements corresponding the facial 

expression j. This allows reconstructing the    image with a 

dictionary containing the columns corresponding to the j
th

 

facial expression and the remaining columns set to zero. 

5. EVALUATION 

5.1 Experimental setup 

To assess the facial expression recognition performance, we 

followed a standard pattern recognition experiment setup. A 

ten-fold cross-validation procedure was used. Each image is 

labeled with a facial expression, which is used to measure 

accuracy. The proposed sparse reconstruction method (SR) 

is compared to a k-NN classifier (with the Euclidean 

distance) and an SVM classifier (with no kernel). The 

FISTA algorithm is run with        and for a maximum of 

1000 iterations (parameters estimated in previous 

experiments). 

 

Datasets. The datasets chosen for facial expression 

recognition was the CK+ dataset [2] and the JAFFE dataset 

[7]. The CK+ is a comprehensive set of sequences of labeled 

face images. The JAFFE dataset contain the images of 10 

Japanese female facial expressions. Both datasets contains 

images with the facial expressions: anger, disgust, fear, 

happiness, sadness, surprise and neutral. The CK+ dataset 

also includes the contempt facial expression. 

5.2 Results and discussion 

Before passing the face images to the facial expression 

analyzer, the dataset images are pre-processed as follows: (i) 

a face image dataset is pre-processed to detect every 

existing faces [21]; (ii) the eyes are detected to align and 

register the face image; and (iii) images are cropped to 

remove non-face regions. 

 We conducted two experiments to assess the proposed 

methods: first we examined the Localized Gabor Moments 

(LGM), comparing it to (i) the full set of grayscale face 

pixels similarly to [14], (ii) the average of all Gabor filters 

(GM), and (iii) the state-of-the-art Local Binary Patterns 

(LBP). Table 1 and Table 2 present the results on both 

datasets. Second, we evaluated influence of the different 

feature normalizations: non-normalized features; normalized 

with the subject neutral expression; normalized with the 

subject average face; and normalized with the global 

average face (results are in Table 3). 

 In the CK+ dataset, Table 1 and Table 2, the best results 

were obtained using sparse reconstruction and Localized 

Gabor Moments features, normalized with the subject 

neutral expression (89.8%). Local Binary Patterns were the 

second type of features. The SVM method came close with 

88.9% precision, but performed worse with other types of 

normalizations. The k-NN did not achieve good results for 

any experiment. We believe that the main reason behind this 

is the lack of training images, which lead to a bias towards 

the facial expressions with more images (surprise). 

 Localized Gabor Moments performs better than the other 

tested features, Table 1. Individual neutral subtraction is 

better for classification, as the differences between the 

neutral and the peak expression are the only ones provoked 

by the expression (little to no noise present). In the JAFFE 

dataset, Table 3, the sparse reconstruction method achieved 

the best result in all experiments but one. These results show 

that the proposed features LGM and SR methods, are a 

powerful combination to beat other state-of-the-art methods. 

Both in the CK+ dataset, which is highly heterogeneous, and 

the JAFFE dataset, which targets a very specific population, 

the proposed techniques achieved competitive results. 

 Finally, we observed that normalization played a crucial 

role in all methods. It should be noted that using the 

individual’s average face to normalize new face images or 

the individual’s neutral face, are the most robust 

normalization procedures 

Table 1. Best precision results for the different features on the 

CK+ dataset. 

Features SR SVM K-NN 

LGM 89.8% 88.9% 76.4% 

Pixels 76.4% 80.1% 71.3% 

Gabor Pixels 77.3% 78.2% 69.4% 

LBP 81.9% 82.4% 55.6% 

Table 2. Precision for the LGM features on the CK+ dataset. 

Normalization SR SVM K-NN 

None 80.6% 82.9% 69.4% 

Subject neutral 89.8% 88.9% 76.4% 

Subject average 87.0% 83.8% 68.1% 

Global average 78.7% 79.2% 60.2% 

Table 3. Precision for the LGM features on the JAFFE dataset. 

Normalization SR SVM k-NN(k = 1) 

None 89.5% 86.8% 89.5% 

Subject neutral 93.7% 92.4% 79.1% 

Subject average 92.4% 95.7% 89.5% 

Global average 90.4% 82.6% 80.9% 

6. CONCLUSIONS 

In this article, we propose a facial expression recognition 

approach based on the sparse reconstruction of a facial 

expression with robust representations of Localized Gabor-

filter Moments. The method relaxed the correct positioning 

of AUs points by examining regions grouping AUs 

(removing the need for manual intervention). This creates a 



robust representation, unaffected by small variations in face 

alignment and rotation. Signal reconstruction by sparse 

approximation with a dictionary of AU regions obtained the 

best result (89.8%) in the CK+ dataset and was the most 

consistent method across all experiments. Future work will 

focus on the study of the facial AU points clustering. 
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