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ABSTRACT

In this paper, we propose a novel interference cancellation
method that exploits secondary data to estimate stationary
interference components present in both the primary and the
secondary data sets, thereby allowing for the removal of such
interference from the data sets, even when these components
share frequencies with the signal of interest. The algorithm
estimates the present interference components one frequency
at a time, thus enabling for a computationally efficient algo-
rithm, that require only a limited amount of secondary data.
Numerical examples using both simulated and measured data
show that the proposed methods offers a notable gain in
performance as compared to other interference cancellation
methods.

Index Terms— Interference cancellation, Radio fre-
quency spectroscopy, Signal of interest-free data.

1. INTRODUCTION

Interference cancellation is an important topic in a variety of
different applications, such as in radar [1,2], wireless commu-
nication [3,4], spectroscopy [5,6], cognitive radio [7], and un-
derwater acoustics [8]. If inadequately treated, the presence
of strong interference signals may easily corrupt the measure-
ment, making detection or identification performance unreli-
able. Various forms of hardware based interference suppres-
sion, including shielding the measurements properly, if fea-
sible, are often of notable importance, although further pro-
cessing is typically required. A variety of signal processing
techniques have been suggested for dealing with interference,
many of which exploits various forms of secondary data that
does not contain the signal of interest (SOI). Typical solu-
tions include, e.g., projecting the measured signal onto the
null-space of the interference [5, 9–11], using oblique pro-
jections [12], or forming adaptive detectors using generalized
likelihood ratio tests [13]. A common problem with these
form of techniques occurs when the SOI and the interference
signal have overlapping frequencies, in which case a projec-
tion onto the interferences null-space might cancel both the
interference and the SOI. Another typical problem with this
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kind of methods is the need for large amounts of secondary
data, which often may need to be noticeably larger than the
primary data set. In this paper, we propose an interference
cancellation method that models the interference as a (pos-
sibly large) number of sinusoidal interference signals, being
present in both the primary and secondary data. This form of
interference occurs in a variety of applications, such as, for
instance, nuclear quadrupole resonance (NQR) spectroscopy,
where the primary data contains the signal signature of in-
terest, corrupted by narrow-band interference signals, often
being several magnitudes stronger than the SOI [14]. As the
SOI decays rapidly, this allows for the possibility of measur-
ing a secondary data set prior to the next excitation [5, 10].
Due to the relative stationarity of the typical interference sig-
nals, the described interference model will apply to the two
data sets. Earlier work on interference cancellation in NQR
spectroscopy has focused on forming projectors orthogonal
to the subspace spanned by the interference [5, 10, 11], or
on spaces close to the subspace formed from the dominant
components in the secondary data [13]. These techniques of-
fer notable interference rejection capabilities, except in cases
when the interference occurs close to the frequencies of the
SOI, which will, for instance, happen when using an excita-
tion coil with a high Q-factor. In particular, for substances
having few spectral lines, the performance degradation may
in such cases be substantial. The here proposed interference
rejection technique is instead constructed such that each dom-
inant frequency component occurring in both the primary and
the secondary data sets are removed, taking into account the
unknown phase offset of each such component. We illustrate
the performance of the proposed technique using both realis-
tic simulation data as well as real NQR measurements, com-
paring to the earlier used techniques. This paper is organized
as follows: In the next section, we outline the data model for
the primary and secondary data sets and define the interfer-
ence model. In Section 3, the proposed algorithm is derived,
and in Section 4 numerical examples are presented. Finally,
we conclude on the work in Section 5.

2. DATA MODEL

Consider the primary data set,

yp(t) = sp(t) + rp(t) + ep(t) (1)
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Fig. 1. Simulated NQR-signal with interference containing
two sinusoids, one of which is on top of the NQR-signal and
one which is randomly positioned. The left figure shows the
measured primary data, whereas the middle figure shows the
primary data after EPIC has removed the interference. The
right figure shows the simulated NQR-signal without inter-
ference.

where sp(t) denotes the SOI, rp(t) the interference, ep(t)
the unstructured noise, often assumed to be a white Gaus-
sian noise, and where t = tp0, t

p
1, . . . , t

p
Np

denotes the time
instances for the primary data measurements. Similar, let the
secondary data be formed as

ys(t) = rs(t) + es(t) (2)

where t = ts0, t
s
1, . . . , t

s
Ns−1 denote the measurement times

of the secondary data set. We will herein consider two par-
ticular cases, namely when tp0 = ts0, which corresponds to
measuring the secondary data at the same time as the primary
data, which, for instance, occurs in stochastic NQR (sNQR)
measurements [5], as well as the case when tpNp−1 < ts0, for
which the secondary data set is recorded at a time after the
primary data set, such as is the case for, e.g., (conventional)
NQR measurements [10]. These two situations, which are
later discussed, have impact on the proposed method. Fur-
thermore, the interference is modeled as

r(t) =

K∑
k=1

αke
2iπfkt (3)

where αk = |αk|e−2iπφk denotes the complex amplitude,
where φk denotes the phase, fk denote the frequency, and the
subscript k denotes the k:th sinusoidal component in the inter-
ference. The number of interference components, K, is usu-
ally unknown and will here be treated as such. For the second

Algorithm 1 EPIC
1: Given yp and ys
2: while (8) is not satisfied do
3: Estimate the most dominant sinusoidal component in

rs using (5)
4: Remove the found component from yp using (6)
5: Remove the found component from ys using (7)
6: end while

case mentioned above, we have to assume that the interfer-
ence is reasonably stationary and narrow-banded, whereas in
the first case, this assumption can be somewhat relaxed and
one may allow for interference containing also damped sinu-
soidal components.

3. PROPOSED METHOD

In the proposed method, we begin by determining the most
dominant spectral components in the secondary data by min-
imizing (where in the first iteration k = 1)

C = min
αk,fk

||yk−1
s − αkak||22 (4)

= min
fk
||yk−1

s − (a∗kak)
−1a∗ky

k−1
s ||22 (5)

typically by evaluating the cost function, C, over a grid of fre-
quencies, where yk−1

s denotes the vector containing the sec-
ondary data at iteration k, ak = [e2iπfkt0 , . . . , e2iπfktN−1 ]T ,
with (·)T denoting the transpose, is the Fourier vector for fre-
quency fk, and, where in (5), αk has been replaced by its
least squares estimate. Then, the resulting spectral line may
be subtracted from both the primary and secondary data sets.
Clearly, the subtraction is highly sensitive to errors in the
estimated phase, φ = ∠α. To allow for a better estimate,
the frequency grid is preferably refined based on the previ-
ous estimate from (5), which then becomes the center of a
new, finer, frequency grid on which a new minimization is
made using (5). This is repeated until satisfactory resolution
is reached and the estimates f̂k, φ̂k, and |α̂k| may be deter-
mined with high precision. The estimated sinusoid is then
subtracted from the primary data using

y(k)p (t) = y(k−1)
p (t)− |α̂k|e−2iπφ̂ke2iπf̂kt (6)

with t = tp0, t
p
1, . . . , t

p
Np

, whereas for the secondary data set

y(k)s (t) = y(k−1)
s (t)− |α̂k|e−2iπφ̂ke2iπf̂kt (7)

with t = ts0, t
s
1, . . . , t

s
Ns−1, where, for the both sets, k de-

notes the k:th estimated interference component to be re-
moved. This procedure is then repeated until the interference
is deemed canceled. Since the number of interference com-
ponents, K, is unknown, it is necessary to introduce some
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Fig. 2. Simulated NQR-signal with interference containing
six damped sinusoids, randomly positioned. The left figure
shows the measured primary data, whereas the middle figure
shows the primary data after EPIC has removed the interfer-
ence. The right figure shows the simulated NQR-signal with-
out interference.

form of stopping criteria in the iteration. Here, we terminate
the subtraction loop when

||yk−1
s − yks ||2/||yk−1

s ||2 < γ (8)

where γ is an appropriately selected user parameter. In our
experience, the algorithm is not overly sensitive to the value
of γ, but it will affect computation time. Empirically, we
have found that a reasonable value is γ = 0.1. Setting γ
too high, the probability of missing small interferences is in-
creased, whereas if setting it too low, the algorithm starts to
subtract noise, which does not impact noticeably on the result,
but will increase the computation time. The proposed method,
here termed EPIC (Estimation of Phase and amplitude for In-
terference Cancellation), is outlined in Algorithm 1, where yp
is the vector containing the primary data, and rs is the vector
containing the interference present in the secondary data set.

4. NUMERICAL RESULTS

We initially examine a simulated sNQR signal [5], satisfy-
ing the above mentioned case 1, wherein the SOI, mimicking
the NQR response of the narcotic methamphetamine, having
only a single spectral line at 1.217 MHz, is corrupted by two
strong narrow-banded interference signals, one of which coin-
cides in frequency with the NQR signal, whereas the other is
randomly positioned in the spectra. Figure 1 shows a typical
example with the acquired primary data (left), the resulting
data after applying EPIC (middle), and the simulated signal
without interference (right). As is clear from the figure, EPIC
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Fig. 3. ROC curves showing the performance of the proposed
method as compared to the RESPEQ and RETAML algo-
rithms, with SIR = −30 dB and SNR=−15 dB.

noticeably reduces the interference components, almost to the
point where it is completely removed. Since the primary and
secondary data sets are acquired simultaneously, the length
of the two data sets are here selected to be the same, with
Np = Ns = 512. The user parameter is throughout the study
set to γ = 0.1. A more complicated case is when the inter-
ference is made up by damped sinusoids. In this case, each of
the damped components may then be approximated as a set
of sinusoidal signals, such that

αe(2iπf−β)t ≈
∑
k

αke
2iπfkt (9)

where the range of frequencies {fk} forms the support of
e(2iπf−β)t. Figure 2 illustrates the performance of the al-
gorithm when the above noted interference is replaced by
six damped sinusoids components, clearly showing the effi-
ciency of the EPIC algorithm also in this case. We proceed
to examine a signal instead formed to mimic a conventional
NQR signal of methamphetamine, satisfying case 2 above.
The interference is made up by three large sinusoids, two of
which are randomly distributed over the spectra, whereas one
is randomly distributed within a small interval (±16.7 kHz)
of the signal’s signature peak. Figure 3 illustrates the ROC
curves for the detection of the substance using the RETAML
algorithm [5], with and without using the proposed EPIC in-
terference cancellation, as compared with the RESPEQ algo-
rithm [11], which uses a subspace-based interference rejec-
tion prior to forming the detection variable. As can be seen in
the figure, the EPIC algorithm successfully cancels the inter-
ference, yielding almost the same performance as if the inter-
ference had not been present, whereas the RESPEQ algorithm
notably suffers from the closely located interference compo-
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Fig. 4. Real NQR data where a sinusoidal interference is po-
sitioned on top of the NQR signal. The left figure shows the
measured primary data whereas the right figure shows the pri-
mary data after removing the interference using the proposed
algorithm.

nent. In these simulations, Np = 512 and Ns = 7 680, with a
signal to interference ratio (SIR) and the signal to noise ratio
(SNR), defined as

SIR = 10 log10

(
Psignal

Pinterference

)
(10)

SNR = 10 log10

(
Psignal

Pnoise

)
(11)

where Pinterference and Pnoise denotes the average power of the
interference and the noise, respectively, being set to SIR =
−30 dB and SNR = −15 dB. As a final example, we exam-
ine measured NQR data. In this case, we examine the NQR
response of imidazole, having a single spectral peak at 1.369
MHz. In these measurements, two cases are examined; one
where a strong interference component is present at the same
frequency as the SOI, whereas in the other case the interfer-
ence is instead close, but not on, the SOI. Figures 4 and 5
show the results for the two cases. In the experiments, the sec-
ondary data, containing Ns = 4 000 samples, was collected
just after the primary data, which contained Np = 1 000
samples, with the interference being created by an oscillator
which was set at the frequency 1.369 MHz for the first case,
and at 1.371 MHz in the second case. The secondary data
was measured when the NQR pulsing was stopped, thereby
only measuring the background noise and the interference.
We note that, when doing NQR-measurements, it is common
to set the excitation frequency at, or close to, the same fre-
quency as the received NQR-signal, which is the explanation
as to why, after demodulation, the peak appears at frequency
zero. As can be seen from the figures, the interference is suc-
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Fig. 5. Real NQR data where a sinusoidal interference is posi-
tioned very close to the NQR signal. The left figure shows the
measured primary data whereas the right figure shows the pri-
mary data after removing the interference using the proposed
algorithm.

cessfully removed in both cases, showing the resulting undis-
rupted NQR-signal.

5. CONCLUSION

In this paper, we have presented a novel interference cancel-
lation method exploiting a secondary data set to reduce the
influence of interference components occurring in both the
primary and secondary data sets. In contrast to existing tech-
niques, the algorithm is able to handle also cases when the
interference components are overlapping the signal of inter-
est. Numerical examples using both simulated and measured
spectroscopic data illustrates the preferable performance of
the proposed method as compared to recent state-of-the-art
cancellation algorithms.
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