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ABSTRACT 

 

Aperture filters are image operators which combine mathe-

matical morphology and pattern recognition theory to design 

windowed classifiers. Previous works propose designing 

and representing such operators using large decision tables 

and classic linear pattern classifiers. These approaches de-

mand an enormous computational cost in order to solve real 

image problems. The current work presents a new method to 

automatically design Aperture filters for color and grayscale 

image processing. This approach consists of designing a 

family of Aperture filters using artificial feed-forward neu-

ral networks. The resulting Aperture filters are combined 

into a single one using an ensemble method. The perfor-

mance of the proposed approach was evaluated by segment-

ing blood vessels in ocular images of the DRIVE database. 

The results show the suitability of this approach: It outper-

forms window operators designed using neural networks 

and logistic regression as well as Aperture filters designed 

using logistic regression and support vector machines. 

 

Index Terms— Image processing, pattern recognition, 

mathematical morphology, neural networks, Aperture filters, 

ensemble of classifiers. 

 

1. INTRODUCTION 

 

The W-operators, or Window operators, are a class of non-

linear operators that belong to computational mathematical 

morphology [1,2]. Most of the practical applications of W-

operators deal with binary images, including image segmen-

tation, texture identification, character recognition, and 

noise filtering [3]. In the case of grayscale image pro-

cessing, such operators have been used for texture identifi-

cation and deblurring in only few applications [1,2]. The 

main characteristic of W-operators is to assign an output 

value for a given pixel that depends only on the values ob-

served within a given window neighborhood (i.e., domain 

constraint). The pixel being processed is usually the center 

pixel of the window employed [3]. The automatic design of 

W-operators consists of a statistical optimization using 

training examples. Each training example is composed of an 

observed image (i.e., an image with the problem to solve) 

and an ideal image (i.e., image desired after processing) [1]. 

In practice, the statistical optimization process used to 

automatically design W-operators is based on the estimation 

of either joint probabilities [1] or conditional probabilities 

[3] for each pattern (i.e., observation) observed via a given 

window. Based on these probabilities, W-operators are de-

signed using a learning algorithm and characterized by a 

function (i.e., classifier) that minimizes some given cost 

function or error measure. The complexity of this optimiza-

tion process depends on the size of the window used and the 

number of channels and gray levels of both the observed and 

the ideal images. The size of the space of possible W-

operators from which to choose the optimal operator is 
||Wlm , 

where m is the number of gray levels of the ideal image, l is 

the number of gray levels of the observed image, and |W| is 

the size of the given window W. Therefore, increasing the 

size of W causes an exponential increase in the complexity 

of the optimization process. The size and shape of W are 

usually chosen a priori by the designer based on the charac-

teristics of the problem to solve (e.g., size of the objects to 

segment and size and type of the noise artifacts to filter). 

W-operators designed using large windows (i.e., win-

dows bigger than 7x7) possess good discrimination capabili-

ties because they can capture the shape, texture, and 

grayscale information better than those designed using 

smaller windows. However, they lead to poor generalization 

because the space of operators used (i.e., search space) to 

find the optimal operator is huge, causing overfitting. On the 

other hand, W-operators designed using small windows 

(e.g., 3x3 or 5x5) have poor discrimination capabilities. 

Therefore, the automatic design of W-operators involves a 

tradeoff between the bias caused by the size of the search 

space and the variance caused by the generalization error. 

The automatic design of W-operators for binary image 

processing using small and medium-sized windows has low 

complexity. In such cases, the search space has 
||22

W

 hypoth-

esis. This is perhaps the most important reason why the 

majority of practical applications of W-operators deal only 

with binary images. For grayscale image processing, the 

complexity of design of W-operators is a major issue be-

cause the search space increases significantly, even for 



small windows and images with only few gray levels. For 

example, for binary segmentation (i.e., 2 classes) of images 

containing 256 gray levels, using W-operators designed 

based on a window W of size |W|, the search space for the 

optimal operator has 
||2562
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 hypothesis. To overcome this 

issue, Aperture filters were proposed [2]. Unlike W-

operators which constrain only the domain of the images 

being processed, Aperture filters constrain both the domain 

using a window W and the range using a window K, thus 

reducing (i.e., constraining)  the search space for the optimal 

operator. Therefore, Aperture filters are suboptimal in com-

parison with W-operators; however, they are expected to 

have better performance in a practical sample-size context 

because of their lower cost of estimation [2]. 

Previously, Aperture filters have been designed using 

various methods such as decision trees [2], multi-mask fil-

ters [4], and pyramidal multiresolution [5]. These 3 ap-

proaches were applied to filtering Gaussian and salt-and-

pepper noise in one-dimensional synthetic signals [4]. An-

other application consisted of deblurring small synthetic 

images (256x256 pixels) with only few gray levels (16 lev-

els) [5]. The characteristics of these problems require em-

ploying only small apertures, making the computational cost 

of these approaches low and potentially attractive for solv-

ing real problems. However, going from synthetic to real 

problems usually requires using larger apertures than those 

used in the previously mentioned works. Additionally, the 

images to process usually have 256 gray levels, and the 

databases are composed of many pairs of training images. In 

this scenario, the high computational cost required both to 

store large tables of patterns and to compute a large number 

of probabilities when implementing any of the previous 

approaches makes their application to real problems a daunt-

ing or even impossible task. To overcome this problem, we 

propose to design Aperture filters using artificial feed-

forward neural networks (NN). 

We model the conditional probability of a pixel as part 

of the object of interest by using the response of a three-

layer (i.e., input, hidden, and output layers) NN [6]. For 

most practical applications, including the one presented in 

this work, the number of patterns that can be extracted by 

placing the aperture in all the pixels of all the available pairs 

of training images is enormous. Thus, the computational 

cost of training a single NN is very expensive, making the 

application of Aperture filters to real problems almost im-

possible. In this paper, we circumvent this issue by using an 

ensemble method [6]. Here, we train as many NNs as pairs 

of training images available. Then, we combine the NN 

responses in a weighted fashion by using the Shannon en-

tropy to measure the uncertainty of each response [6,9]. 

To test the performance of the proposed approach in a 

real image processing problem, we designed and applied 

Aperture filters to segment blood vessels in fundus ocular 

images from the DRIVE public database [7]. We compared 

the results obtained by using the proposed approach with 

those obtained from applying (a) W-operators designed 

using NN and logistic regression [8], (b) Aperture filters 

designed using logistic regression, and (c) support vector 

machines (SVM) with linear kernel [8]. We chose this prob-

lem because segmentation of ocular images yields important 

information about the morphological features of ocular 

blood vessels such as length, width, and tortuosity [7]. The-

se features can be used for medical applications or biometric 

control of access. For medical applications, medical profes-

sionals and computer-aided methods use these features to 

diagnose and evaluate certain diseases, e.g., hypertension, 

atherosclerosis, and diabetic retinopathy. Some systems of 

biometric control of access base their work on the fact that 

the retinal vasculature morphology is unique in each person. 

The rest of this paper is organized as follows. In Section 

2, we review some concepts and definitions with respect to 

Aperture filters applied to image segmentation and describe 

the proposed approach. We present an example of applica-

tion and discuss the results in Section 3, and in Section 4, 

we summarize the main contributions of this work and out-

line possible future developments. 

 

2. METHODOLOGY 

 

In this section, we present some theoretical definitions that 

provide background and describe the proposed approach. 

 

2.1. Aperture filters for binary segmentation 

 

Let the function O: E  L be a digital grayscale image, 

where  E is a nonempty subset of ℤ
2
 and L = {0,1,…,l - 1} is 

a grayscale set, with l∈ℤ
+
. Usually, for practical applications 

we consider l = 256. The set of all possible grayscale images 

from E to L is denoted by L
E
. A pixel t of the grayscale 

image O is a coordinate in E of the form t = (x,y) that takes 

an element from the set L. In a similar way, we define a 

binary image as a function I: E{0,1}. The set of all 

possible binary images is denoted by {0,1}
E
. We also define 

a multivariate image as a function O: E )...(
21 m

LLL   

such that O = (O1,O2,...,Om), where Oi∈L
E
  are the channels 

of O. We denote the set of all multivariate images from E to 

)...(
21 m

LLL   by )...(
21 m

LLL 
E
. A pixel t of the 

multivariate image O is a coordinate in E that takes the 

vector (O1(t),O2(t),...,Om(t)). Color images are a particular 

case of multivariate images composed of m = 3 channels. 

For the RGB color space [9,10], the images O1, O2, and O3 

represent the red, green and blue channels, respectively. 

Color and grayscale images are particular cases of multivar-

iate images having a single channel. 

In this work, we transform the RGB color images into 

grayscale images. For this purpose, given an RGB image O 

= (OR,OG,OB) and an arbitrary point t∈O, the function 
EE LLLL  )(:

321
 is a transformation of RGB into 

grayscale images, such that 
 

 )()()())(()(
321

tOαtOαtOαroundtOtG
BGR

 .         (1) 



In (1), the weights 
i

α  must must satisfy 1
321
 ααα , 

and round(a) rounds a to nearest integer. Let us define a 

spatial window W = {w1,w2,…,wn}, with wi∈ℤ
2
, to be a finite 

small subset of ℤ
2
 centered at the origin of E: (0,0)∈W. We 

denote the number of points (i.e., cardinality) of W by n = 

|W|. Let a range window K = {-k,-k+1,…,0,…,k} be a set 

that contains the input gray levels for filtering. K is com-

posed of 2k+1 values, with k∈ℤ
+
 and kl. Finally, let an 

aperture KW   be the Cartesian product of W and K.  

Given the grayscale image O and the aperture KW  , 

an aperture configuration, also called observation, is a 

function X: W  K so that  X = (X1,…,Xn), with n = |W|. We 

obtain aperture configurations from the image O by 

applying the following 4 steps: (a) applying the spatial 

translation of O by t: O-t = O(t’-t), where t,t’∈E; (b) 

registering the pixel values of O-t within the spatial window 

W, which returns the vector uO(t) = (O(w1 - t),…,O(wn - t)) 

(for simplicity of notation, we refer to vector uO(t) with u 

from now on); (c) applying the range translation of u by a 

scalar z∈ℤ
+
: u-z = (O(w1 - t) - z,…,O(wn - t) - z); and (d) the 

projection of points of u-z outside K to either +k or -k. 

Formally and denoting the projection operation by (a)*, 

each point Xi ∈X, with i = 1,2,…,n, is obtained from a given 

observation u = (u1,…,un) as follows: 
 

Xi = (ui)* = min(max(-k,ui - z),k). (2) 
 

Given the definitions above, let an Aperture filter Ψ: 

L
E
{0,1}

E
 be a function that maps grayscale images into 

binary images [2]. Aperture filters are characterized by 

functions of the form ψ: K
W
{0,1}, called characteristic 

functions, so that for each t∈E: 
 

I(t) = Ψ(O)(t) = ψ((O(w1 - t) – z)*,…,(O(wn - t) - z)*).    (3) 
 

In (3), z: L
W
L is a function that allows us to place the 

aperture KW   vertically at the pixel t∈O. We use z = 

median(u1,…,un). In the domain of pattern recognition, the 

function ψ can be assumed to be a classifier that maps 

observations X∈{X1,…,XN}, with Xi = (Xi1,…,Xin), to labels 

from the set {0,1} [6,8,11]. Based on this assumption, 

processing the image O using Aperture filters is reduced to a 

classification of its pixels within the aperture KW  . 

Finally, Aperture filters fulfill 3 important properties: (a) 

spatial translation invariance: Ψ(Ot) = Ψ(O)t for each pixel 

t∈O; (b) range translation invariance: Ψ(O(t) + z) = 

Ψ(O(t)) + z for any z∈ℤ
+
; (c) local definition in KW  : 

Ψ(O)(t) = Ψ(O∩( KW  ))(t) [1-5]. 

The segmentation of the grayscale image O consists of 

obtaining a partition O = {S1, S2,…,Sp} of the set of pixels S 

= {t: t∈E} of O, such that the sets Si∈O are connected, 

disjointed, and S = 
p

i 1U


Si. Therefore, the pixels belonging 

to each set Si are spatially connected and have similar prop-

erties or features in the image O. As a result of the segmen-

tation process, an image I is obtained containing p segment-

ed objects or regions, including the background. In binary 

segmentation, we extract a single type of object (i.e., p = 2), 

and therefore, I is a binary image. 

 

2.2. Statistical design of Aperture filters 

 

For the statistical design of Aperture filters, we consider 

each pair of images (O,I) to be drawn from a jointly random 

signal process (O,I). O generates grayscale images O∈L
E to 

be observed, and I generates binary images I∈{0,1}
E
 to be 

estimated. In this context, the pixels of O and I are consid-

ered discrete random variables. Therefore, the statistical 

design is to find an Aperture filter Ψ with characteristic 

function ψ using a learning algorithm and an error measure 

between Ψ(O) and I [1-5]. Typically, the error measure to be 

minimized is the mean squared error (MSE) [6,8,11].  

Given a pair of images (O,I) and a filter Ψ, the character-

istic function ψ of Ψ is applied to the aperture observation X 

obtained at each pixel t of O to form an estimator ψ(X) of Y 

= I(t). If we assume O and I are jointly stationary, then X 

and Y are independent of the position t. Moreover, the 

jointly random process (O,I) induces a probability 

distribution Pr(X,Y) = Pr(Y|X)Pr(X) on the vector space 

(,), with (X,Y)∈(,), where  is the space of all |K|
|W|

 

possible aperture configurations and  = {0,1}. Pr(Y|X) is 

the a posteriori class conditional distribution, and Pr(X) is 

the probability of the ocurrence of the observation X. Thus, 

in the statistical design, we want to find the filter, Ψ, that 

minimizes the MSE between Ψ(O) and I defined as follows: 
 

MSE(Ψ) = E[(Ψ(O)-I)
2
].          (4) 

 

In (4), E denotes the expectation operator relative to the 

joint distribution Pr(X,Y) of (O,I). Taking into account that 

Ψ is characterized by ψ∈{0,1}, then (4) yields the following 

expression: 
 

MSE(Ψ) = Pr(Ψ(O)(t)I(t)) = MSE(ψ) = Pr(ψ(X)Y).   (5) 
 

The probability Pr(ψ(X)Y) = Σ{X:ψ(X)=1}Pr(Y=0|X)Pr(X) + 

Σ{X:ψ(X)=0}Pr(Y=1|X)Pr(X) measures the error rate of ψ. 

Pr(Y=1|X) and Pr(Y=0|X) = 1 - Pr(Y=1|X) are the a poste-

riori class conditional probabilities that X takes 1 or 0, re-

spectively. Therefore, the design of an Aperture filter can be 

reduced to only 2 steps: first estimating Pr(Y=1|X) and then 

finding the value of ψ for each possible observation X by 

applying the following decision rule: 
 



 


otherwise0

)|1Pr(if1 τY
ψ

X
.  (6) 

If we set the threshold 0.5τ  in (6), then ψ is the 

optimal function that minimizes (5). However, for some 

practical applications, we can select the value of the 

threshold τ  based on a tradeoff between the false positive 

rate (FPR) and the false negative rate (FNR) of ψ. 



   

Fig. 1. Three-layer feed-forward NN architecture. 

 

2.3. Automatic design of Aperture filters using NN 

 

Here, we model the distribution Pr(Y=1|X) by using the 

response of a three-layer (input S
1
, hidden S

2
 and output S

3
) 

feed-forward NN composed of q neurons in S
1
 as shown in 

Figure 1 [3,6]. We chose NNs because of their ability to 

implement complex decision boundaries. The network ar-

chitecture we used was selected based on the fact that a 

feed-forward NN composed of 3 layers with a sufficient 

number of neurons in S
1
 is capable of approximating any 

Borel measurable function with the desired degree of accu-

racy [3,6]. Sigmoid transfer functions f: [0,1] are used in 

all the neurons of S
1
 and S

2
: f 

1
(a) = f 

2
(a) = 1/(1+exp(-a)). 

To fit the set β = {W
1
,W

2
,b

1
,b

2
} of weights and biases of 

the NN, we maximize the likelihood Pr(|β)
 
of the set  = 

{(X1,Y1,freq(X1,Y1)),...,(XN,YN,freq(XN,YN))} of N training 

patterns given the parameters β of the NN. The number of 

times that Xi has the value Yi in the training set of images is 

denoted by freq(Xi,Yi). Pr(|β) is computed as follows: 
 

Pr(|β) =   

N

i j1

1

0
Pr (Y=j|Xi) 

freq(X,Y=j)
.
  

   (7) 

 

The maximization of (7) is equivalent to finding the set β 

that minimizes -ln(Pr(|β). Since finding an exact solution 

for this problem is a very difficult task, we use a gradient-

descend method to find a local minimum instead [6]. 

 

2.3. Ensembles of Aperture filters 

 

The ensemble method tackles the practical problem of 

dealing with a huge and single training set  of patterns to 

design a unique filter using all the pairs of training images 

available. Storing a single large training table of patterns 

demands a huge amount of memory, and NN training takes 

a long time. To overcome these issues, we design a filter for 

each training pair of images we have available. Then, we 

combine the predictions of each filter designed 

Ψ∈{Ψ1,…,ΨM} by employing the following expression: 
 

Pr(Y=1|X)Ensemble =  

M

i
i

Pe
1

Pr(Y=1|X)i.     (8) 

 

In (8), Pr(Y=1|X)i is the probability predicted by the filter 

Ψi. The sum of all weights Pei is 1. The weight Pei controls 

the influence of Ψi in the final prediction of the ensemble 

and is computed by using the following equation: 
 

Pei(X) = (1 - H(ψ(X)i))/(M-  

M

j
ψH

1
( ( X)j). (9) 

In (9), H(ψ(X)i) = -Σj={0,1}Pr(Y=j|X)ilog2(Pr(Y=j|X)i) is the 

Shannon entropy [6,9] of the prediction of Ψi regarding the 

pattern X. If the probability value Pr(Y=1|X)i is very close 

to 0.5, then the uncertainty of Ψi to assign a label to X is 

high; and therefore, its degree of influence on the ensemble 

prediction Pr(Y=1|X)Ensemble is low. 

 

3. RESULTS AND DISCUSSION 

 

We evaluated the performance of the proposed approach by 

segmenting fundus ocular images. This segmentation task 

consists of partitioning the set of pixels of an ocular image 

into 2 disjoint subsets. One subset contains the thick and 

thin blood vessels of the retinal vascular tree. The other 

subset is formed by the pixels belonging to both the optical 

disc and the retinal contour, and in some cases, the pixels 

belonging to certain ocular pathologies such as hard and soft 

exudates and hemorrhages. 

The images used in this work come from the DRIVE 

public database [7]. This database consists of 2 groups of 

images, one for training and the other for testing. Each 

group contains 20 pairs of images. Each pair consists of one 

color image and its respective binary image. Binary images 

contain the blood vessels manually segmented by experts. 

Each channel of the color images contains 256 gray levels. 

Both color and binary images have a size of 565x584 pixels. 

In this database, 7 images have pathologies (i.e., exudates 

and hemorrhages). Four of these images are in the training 

group, and the other 3 are in the testing group. 

We transformed the color images into grayscale images 

by employing (1) with the weights 07.0
1
α , 9.0

2
α , and 

03.0
3
α . We chose these weights because the green chan-

nel in ocular images has the highest contrast between the 

blood vessels and the background; whereas, the red and blue 

channels have lower contrast and some level of noise [7,9]. 

Then we designed an ensemble of Aperture filters using 

the proposed approach. The filters that composed the en-

semble were designed using the patterns extracted from each 

of the 20 pairs of training images by using the aperture 

KW  . W is a 16x16 spatial window, and K = {-10,-

9,…,10} is the range window empoyed. This aperture al-

lowed us to capture the structure of the blood vessels well 

enough for the segmentation task. Each NN used to model 

Pr(Y=1|X) was composed of 30 neurons in S
1
. This number 

of neurons was obtained by applying model selection with 

crossvalidation in the training set of images. 

Next, we applied the ensemble designed in the previous 

step to each of the 20 images in the testing set. The 

perfomance of the ensemble was evaluated by computing 

the receiver operating characteristic (ROC) curve and the 

value of the area under the curve (AUC) [11] shown in 

Figure 2. The ROC curve is based on the true positive rate 

TPR = TP/(TP + FN), and the false positive rate FPR = 

FP/(FP + TN) [10]. For each image segmented, TP is the 

number of pixels properly classified as blood vessels; FN is 



the number of pixels incorrectly classified as background; 

FP is the number of pixels incorrectly classified as blood 

vessels; and TN is the number of pixels properly classified 

as background. Each pair (TPR,FPR) of the ROC curves 

was computed by thresholding Pr(Y=1|X)Ensemble at each 

value of τ ∈{0,0.05,…,1}. The TPR and FPR used to plot 

the ROC curve are the averages of the 20 testing images. 

The ROC curves and AUC values presented in Figure 2 

show that the proposed approach outperforms W-operators 

designed using NN and logistic regression. This could be 

because the total cost of estimating optimal Aperture filters 

using NN and combining the predictions in the ensemble is 

lower than the cost of designing ensembles of W-operators. 

The results show that the proposed approach also outper-

forms ensembles of Aperture filters designed using logistic 

regression and SVM with linear kernel. This could be be-

cause NNs are able to implement more complex decision 

boundaries than hyperplanes implemented by logistic re-

gression and SVM [6,11]. We used linear kernels for the 

case of SVMs because of the high computational cost of 

finding the support vectors using SVMs with more sophisti-

cated kernels (e.g., radial basis kernels). 

Finally, the examples of images predicted by the ensem-

ble of Aperture filters (using a threshold τ = 0.5) shown in 

Figure 2 indicate that this method is able to identify both 

thick and thin blood vessels. We can also see that the en-

semble of Aperture filters is robust to changes in color and 

brightness inside the image as well as between images. 

 

4. CONCLUDING REMARKS 

 

We have presented a new method of designing Aperture 

filters for color and grayscale image processing. This new 

approach uses feed-forward NNs to design and represent the 

characteristic functions of Aperture filters. We chose NNs 

because of their ability to implement complex decision 

boundaries for classification. To address the high computa-

tional cost of training a single NN using a large table of 

patterns, we proposed designing a family of Aperture filters 

using the tables of patterns extracted from each pair of train-

ing images available and then combining their predictions in 

a weighted fashion to form an ensemble of filters. 

To test the performance of the proposed approach, we 

segmented blood vessels in ocular images from the DRIVE 

database. The results show that our method outperforms 

ensembles of W-operators designed based on NNs and lo-

gistic regression. We also compared the results obtained in 

this work with those obtained by applying an ensemble of 

linear classifiers based on logistic regression and SVM. 

Further work includes testing the proposed method to 

solve additional image processing problems involving the 

segmentation of objects. In the future, this procedure could 

be expanded to include direct processing of color images, 

which has the potential of improving its performance due to 

the additional information contained in color images. 

 

 

    

    
 

Fig. 2. Results of applying the proposed approach. In the top 

row, the ROC curves and AUC values are presented. The 2nd row 

shows the original color images, and the 3rd row shows binary 

images. The 1st column shows an example of a training pair of 

images (observed and ideal); whereas, the 2nd, 3rd, and 4th col-

umns show the results of the segmentation of the images from 

the 2nd row. 
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NN Aperture (proposed)                 AUC = 0.95536

Logistic Regression Aperture        AUC = 0.92088

NN Window                                      AUC = 0.91763

SVM Aperture (linear kernel)         AUC = 0.90466

Logistic Regression Window         AUC = 0.81243


