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ABSTRACT
This paper is concerned with the use of split-Gaussian
importance distributions in sequential importance re-
sampling based particle filtering. We present novel
particle filtering algorithms using the split-Gaussian im-
portance distributions and compare their performance
with several alternatives. Using a univariate nonlin-
ear reference model, we compare the performance off
the importance distributions by monitoring the effective
number of particles. When using adaptive resampling,
the split-Gaussian approximation has the best perfor-
mance, and the Laplace approximation performs better
than importance distributions based on unscented and
extended Kalman filters. In addition, we also consider
a two-dimensional target-tracking example where the
Laplace approximation is not available in closed form
and propose fitting the split-Gaussian importance distri-
bution starting from an unscented Kalman filter based
approximation.

Index Terms— split-normal distribution, split-
Gaussian distribution, particle filter, importance distri-
bution

1. INTRODUCTION

This paper is concerned with particle filtering in discrete-
time probabilistic state-space models (see, e.g., [1, 2, 3,
4]) of the form

xk ∼ p(xk | xk−1),

yk ∼ p(yk | xk).
(1)

The model describes the dynamics of the state xk ∈ Rn
via the probability distribution for the current state given
the state at the previous time step, and the observations
yk ∈ Rd via the probability distribution for the measure-
ment given the current state. In the Bayesian filtering
problem (see, e.g., [4]), we desire to estimate the (fil-
tering) posterior distribution of the state xk given the
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current and previous measurements (y1, . . . ,yk), that is,
p(xk | y1:k). If the dynamic and measurement models are
linear with Gaussian noise, the filtering distribution can
be exactly computed using the Kalman filter. However,
in the general case one must resort to approximations
such as the particle filter algorithm considered in this
paper.

In sequential importance resampling based particle
filtering [1, 2, 3, 4], the posterior distribution of the state
is approximated by a discrete set of samples (called parti-
cles) and weights associated to them. This particle set is
updated sequentially such that after each measurement,
a new value for each particle i is sampled from an im-

portance distribution π(xk | x(i)
k−1,y1:k) and the weights

are updated to represent the new posterior distribution
of the state.

The optimal importance distribution with respect to
the weight variance would be the distribution of the cur-
rent state given the previous state and the new measure-
ment [1]. However, using the optimal importance dis-
tribution may not be feasible. Alternatives suggested in
literature are Gaussian approximations, for example, the
Laplace approximation or extended or unscented Kalman
filter based approximations [1, 5, 2].

Geweke [6] has suggested a split-Gaussian impor-
tance distribution for (nonsequential) importance sam-
pling. The split-Gaussian distribution is a Gaussian
distribution that is scaled with different scaling factors
in different directions away from the mode. The scal-
ing factors are selected to match the behavior of the
target distribution. In this article, we propose the split-
Gaussian importance distribution for particle filtering
and compare its performance with alternative impor-
tance distributions in terms of the effective number of
particles [7] and tracking error.

The use of split-Gaussian distributions in the sequen-
tial setting has also been considered before by Guo and
Wang [8], who used the split-Gaussian distribution in
their sequential quasi-Monte Carlo algorithm. However,
their algorithm is different in that they construct a global
proposal distribution for all points based on the points
from the previous step, whereas in the particle filtering
approach we consider here, a separate proposal distri-
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bution is used for each particle. To our knowledge, the
split-Gaussian distribution has not been proposed for the
present type particle filters before. Recently, we [9] have
also considered split-Gaussian importance distributions
for particle filters in a certain class of Poisson regression
models. In that work, we motivated the split-Gaussian
distribution by convergence analysis and proposed select-
ing the scaling factor so that certain convergence criteria
are fulfilled. The present work is different in that here
we use the Geweke-style scaling aiming to match the op-
timal importance distribution.

In the present paper, we also consider fitting the split-
Gaussian importance distribution based on other Gaus-
sian approximations in case the Laplace approximation
is not analytically available. For this case, we propose
using the grid used to select the scaling factors also to
improve the mode of the distribution.

2. PARTICLE FILTERS

In particle filtering, the filtering distribution p(xk |
y1:k) is approximated by a weighted set of particles

{(w(i)
k ,x

(i)
k ) : i = 1, . . . , N}. At each measurement yk,

the particle set is updated sequentially as follows:

1. For each i = 1, . . . , N , draw a new point x
(i)
k from the

importance distribution x
(i)
k ∼ π(xk | x(i)

k−1,y1:k).

2. For each i = 1, . . . , N , update the weights:

w
(i)
k = w

(i)
k−1

p(yk | x(i)
k ) p(x

(i)
k | x

(i)
k−1)

π(xk | x(i)
k−1,y1:k)

.

3. Normalize the weights wk to sum to unity.

4. If the particle set is too degenerate, do resampling.

The quality of the approximation depends on the vari-
ance of the weights and therefore on the effective number
of particles [7]

ESS(wk) = 1/
∑
i

(w
(i)
k )2, (2)

which is often used as a measure of the particle degen-
eracy. A typical resampling condition in step 4 of the
above algorithm is a threshold on the effective number
of particles.

Thus, in particle filtering, one desires to maximize the
effective number of particles, or equivalently, minimize
the variance of the weights. The optimal importance

distribution in this sense would be π(xk | x(i)
k−1,y1:k) =

p(xk | x(i)
k−1,yk) [1]. However, sampling from it is often

infeasible and the analytical form of the density might
not be known. Therefore, one usually selects the impor-
tance distribution based on some approximation of the
optimal importance distribution. Alternatives suggested

in the literature typically use approximations based on
the extended Kalman filter [1] or the unscented Kalman
filter [5], more general non-linear Kalman filters [4], or
the Laplace approximation [2]. In the so-called bootstrap
filter [10], the dynamic model p(xk | xk−1) is directly
used as the importance distribution.

The selection of the importance distribution can also
have an effect on the convergence of the particle filter in
the limit N → ∞. In particular, many convergence re-
sults require the weights to be bounded [11]. In practice,
this can usually be guaranteed by selecting the impor-
tance distribution so that it has heavier tails than the
optimal distribution. Using the Student’s t-distribution
instead of a Gaussian distribution has been suggested for
this purpose [2].

3. SPLIT-GAUSSIAN IMPORTANCE
DISTRIBUTION

Geweke [6] proposed using the split-Gaussian as the im-
portance distribution in importance sampling. In this
section, we describe how to use it in particle filtering.
Note that we use a continuous-density version of the dis-
tribution (e.g. [12]), whereas Geweke used a formulation
that has a discontinuity at the mode.

In the one-dimensional case, the split-Gaussian dis-
tribution is defined in terms of the mean µ and variance
σ2 of an underlying Gaussian random variable as well as
scaling factors q and r (e.g. [8]). In the multidimensional
case, one starts from mean µ and variance Σ of the un-
derlying Gaussian random variable. The split-Gaussian
distribution is constructed by defining scaling factors q
and r for each principal component of Σ, that is, each
column of a matrix T such that Σ = T TT. Then, a
standard multivariate Gaussian ε is drawn and each com-
ponent of ε is scaled by the scaling factors qi, ri to form
a split-Gaussian variable η. The variable x is then ob-
tained by the transformation x = µ + Tη. The density
is

SN(x | µ,T,q, r) =

√
2n

πn
1

|T|
∏

(qi + ri)
e−

1
2 ε

T ε. (3)

Note that above, x does not explicitly appear on the
right hand side. Instead, the expression is evaluated by
substituting the auxiliary variable ε. An expression for
the density containing x explicitly would contain 2n dif-
ferent cases and therefore is omitted here. Pseudocode
for drawing a multivariate split-Gaussian random vari-
able and computing the corresponding density is given
in Algorithm 1.

In the particle filter we now aim to approximate the
optimal importance distribution as a split-Gaussian dis-
tribution. Following Geweke [6], we fit the parameters
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function DrawSplitGaussian(µ,T,q, r)
Draw ε ∼ N(0, In)
for i ∈ {1, . . . , n} do

Draw ui ∼ Uniform(0, 1)
if ui < qi/(ri + qi) then

ηi ← qi |εi|
else

ηi ← −ri |εi|
end if

end for
x← µ + Tη

density ←
√

2n

πn
1

|T|
∏

(qi+ri)
e−

1
2 ε

T ε

return x,density
end function

Algorithm 1: Sampling from a split-Gaussian distribu-
tion.

function FitSplitGaussian(xk−1,yk)
φ(xk) := log p(yk | xk) p(xk | xk−1)
µ← arg maxx φ(x)

Σ← −( ∂2

∂x2φ(x))−1 . Inverse Hessian
T← T s.t. T TT = Σ . E.g., based on singular

value decomposition
for i ∈ {1, . . . , n} do

for δ ∈ {δmin, . . . , δmax} do
fi(δ)← |δ| (2 (φ(µ)− φ(µ + δT ei)))

−1/2

end for
qi ← maxδ>0 fi(δ), ri ← maxδ<0 fi(δ)

end for
return µ,T,q, r

end function

Algorithm 2: Fitting the split-Gaussian approximation
to the optimal importance distribution.

function SGParticleFilter(y,N)

Draw x
(1)
0 . . . x

(N)
0 from the prior

for k ∈ {1, . . . , T} do
for i ∈ {1, . . . , N} do

µ,T,q, r← FitSplitGaussian(x
(i)
k−1,yk)

x
(i)
k , π ← DrawSplitGaussian(µ,T,q, r)

w
(i)
k ← w

(i)
k−1

p(yk|x(i)
k )p(x

(i)
k |x

(i)
k−1)

π
end for
Normalize the weights to sum to unity
if ESS(wk) < threshold then

wk,xk ←Resample(wk,xk)
end if

end for
return {x(i)

k , w
(i)
k : i = 1, . . . , N, k = 1, . . . , T}

end function

Algorithm 3: Split-Gaussian particle filter.
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Fig. 1. Illustration of scaling the split-Gaussian approx-
imation. Solid line is the density of Log-N(.22). Dotted
line is the Laplace approximation N(2.6, 0.512). Dashed
lines are scaled half-Gaussians to match the decay at
σ̂, 2σ̂, 3σ̂ away from the mode. The final split-Gaussian
approximation corresponds to the widest dashed lines in
both directions. All densities scaled to have the same
maximum.

of the split-Gaussian distribution as follows. We first ex-
plain the procedure for the one-dimensional case. First, µ
and σ are set as the Laplace approximation of the target
distribution. Then, the scaling factors q, r are selected
as follows to improve the approximation away from the
mode. The target distribution is evaluated in grid points
away from the mode. Each grid point defines a candi-
date scaling factor based on matching the rate of decline
of the target distribution to the rate of decline of the
normal approximation,

f(δ) = |δ| (2 (log p(µ)− log p(µ+ δ σ)))
−1/2

, (4)

where p is the target distribution, µ+δ σ is the grid point
and f is the candidate scaling factor. In each direction,
we select the scaling factor that corresponds to the widest
distribution,

q = sup
δ>0

f(δ), r = sup
δ<0

f(δ). (5)

In the multidimensional version, the scaling (selection of
q, r) is performed separately along each principal direc-
tion of the covariance matrix Σ. In more technical terms,
we find T such that T TT = Σ, and then for each dimen-
sion i, δT ei takes the place of δ σ in Equation (5). In
Algorithm 2, we give pseudocode for selecting the param-
eters as a function of the particle value in the previous
step and the current measurement. The scaling proce-
dure is illustrated in Figure 1 by showing how a split-
Gaussian approximation to a lognormal distribution is
constructed.

In the case where the Laplace approximation is not
analytically available, one may simply start from some
other Gaussian approximation such as the ones used in
sigma-point filters (e.g., [4]). We propose a crude nu-
meric algorithm for finding the mode of the optimal im-
portance distribution to be used in conjunction of the
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split-Gaussian fitting: if a higher density is found in the
grid used for fitting the split-Gaussian distribution, sim-
ply restart the split-Gaussian procedure with that mode.
We describe the split-Gaussian particle filtering algo-
rithm in Algorithm 3.

4. NUMERICAL RESULTS

4.1. Univariate toy model

We consider the following commonly used toy-model
(see, e.g., [1]):

xk ∼ N

(
1

2
xk−1 + 25

xk−1
1 + x2k−1

+ 8 cos(1.2k), Q

)
,

yk ∼ N
(
0.05x2k, R

)
.

(6)

For the variances, we used Q = 1, R = 0.05, and the
initial state was x0 = 0. 1, 000 different datasets were
simulated with T = 25, and the particle filter was run
with N = 1, 000 particles on all datasets. The follow-
ing six importance distributions were used: the split-
Gaussian approximation, the Laplace approximation, ex-
tended Kalman filter (EKF), unscented Kalman filter
(UKF), and t-distribution scaled with the EKF/UKF
variance.

First, we monitored the effective number of particles
(ESS, Eq. 2) without resampling. The results are plot-
ted over time in Figure 2. Second, we ran the particle
filters with adaptive resampling, where resampling was
performed every time the ESS dropped below N/4. The
average numbers of resamplings in 25 steps are shown in
Table 1.

The results show that the ESS drops quite fast
with all tried importance distributions, but the split-
Gaussian and Laplace importance distributions have the
best performance. The EKF and UKF approximations
lead to clearly lower ESS than the split-Gaussian and
Laplace approximation, and the t-distributed versions
of EKF/UKF perform even worse. Without resampling,
the Laplace distribution has higher mean ESS than the
split-Gaussian approximation after 4th measurement
and later. However, the cumulative number of resam-
plings with the adaptive resampling threshold is the
lowest with split-Gaussian. Furthermore, we also tried
resampling after every step, in which case the split-
Gaussian distribution had higher mean ESS than the
Laplace distribution after most steps.

4.2. Target tracking

Here we consider a tracking experiment where the target
location is two-dimensional and follows random walk,

xk = xk−1 + qk, (7)
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Fig. 2. Effective number of particles during the first 10
time steps using datasets simulated from the reference
model. Average over 1, 000 datasets.

Distribution Mean 95 % CI
Split-Gaussian 4.35 [4.28, 4.42]

Laplace 4.51 [4.43, 4.59]
UKF 4.96 [4.88, 5.04]
EKF 5.30 [5.21, 5.38]

UKF (t) 5.47 [5.39, 5.54]
EKF (t) 5.48 [5.40, 5.55]

Table 1. Number of resamplings required with adaptive
resampling in 25 steps. Average over 1, 000 datasets.

qk ∼ N(0,Q), x0 ∼ N(m0,P0). The parameters in
this experiment where Q = 0.01 I2, P0 = I2, m0 =(
1 0

)T
. The measurement model consisted of a single

sensor tracking both angle and range. The range mea-
surement is assumed to be logarithm of the distance to
the target with additive Gaussian noise. Thus, the mea-
surement model is

yk =

(
atan2 (xk,2 − s2,xk,1 − s1)

log
√

(xk,1 − s1)2 + (xk,2 − s2)2

)
+ rk, (8)

where s =
(
0 0

)T
is the sensor location and the sensor

noise is rk ∼ N(0,R) where R = diag(0.12, 0.012). In
this experiment, we assumed that there is a measurement
y0 associated with the first state.

We simulated 1, 000 datasets consisting of 100 mea-
surements each and run the UKF particle filter and the
UKF-based approximation in the split-Gaussian parti-
cle filter fitting stage. 1, 000 particles were used with
resampling after every step. The performance of the fil-
ters was evaluated using the mean squared error of the
estimated target location. The results are shown in Ta-
ble 4.2. Based on median over the 1, 000 replications, the
UKF importance distribution performed slightly better,
but in some cases it had really poor performance, where-
fore the mean performance of the split-Gaussian version
is better.
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UKF Split-Gaussian
Mean SSE 1.57× 103 2.14

Median SSE 1.18 1.65
95th percentile 17.9 5.58

Table 2. Summary of the distribution of sum of squared
tracking error. Mean, median and 95th percentile taken
over the 1, 000 replications.

5. CONCLUSION AND DISCUSSION

In this work, we have studied the use of split-Gaussian
distribution as an importance distribution for particle
filtering. We compared its performance to alternatives
in two numeric experiments: a unidimensional toy model
as well as a two-dimensional target-tracking example.

In the unidimensional toy model, we compared the
split-Gaussian importance distribution to the Laplace
approximation and importance distributions based on
extended and unscented Kalman filters. We monitored
the number of resamplings required when performing
adaptive resampling based on an effective sample size
threshold. Based on this measure, the split-Gaussian dis-
tribution performed better than Laplace approximation,
which in turn was better than the extended/unscented
Kalman filter approaches. The poor performance of the
EKF/UKF based approximations is likely due to the fact
that they do not capture the mode of the target distribu-
tion correctly, whereas the Laplace approximation is con-
structed to have the correct mode. However, the Laplace
approximation is local approximation, based only on the
behavior of the target distribution around its mode. The
split-Gaussian approximation improves the Laplace ap-
proximation by scaling it according to global behavior of
the target distribution. Using the t-distribution instead
of Gaussian in the EKF/UKF based importance distri-
bution lead to weaker performance in terms of effective
number of particles.

A drawback of the Laplace approximation is that it
requires finding the mode and Hessian of the log-density
of the target distribution. For cases where they are not
analytically available, we considered a modification to
the split-Gaussian importance distribution. In this mod-
ification, one starts from some Gaussian approximation,
and uses the same grid points to both find an approxima-
tion to the mode of the density and to compute the split-
Gaussian scaling factors. In a two-dimensional track-
ing simulation, this type of split-Gaussian particle fil-
ter outperformed the UKF-based particle filter. How-
ever, more work is required to assess how much this
explained by the split-Gaussian scaling versus simply
finding a better mode for the importance distribution.
Furthermore, there is the tradeoff in computational cost
between performing the split-Gaussian procedure versus

simply adding more particles.
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