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ABSTRACT
Recent work in `p-norm regularized sparsity recovery

problems (where 0 ≤ p < 1) has shown that signals can
be recovered with very high accuracy despite the fact that
the solution to these nonconvex optimization problems are
not necessarily the global minima but are instead potentially
local minima. In particular, `p-norm regularization has been
used effectively for signal reconstruction from measurements
corrupted by zero-mean additive Gaussian noise. This paper
describes a p-th power total variation (TVp) regularized op-
timization approach for image recovery problems in photon-
limited settings using iterative reweighting. The proposed
method iteratively convexifies a sequence of nonconvex TVp

subproblems using a weighted TV approach and is solved
using a modification to the FISTA method for TV-based de-
noising. We explore the effectiveness of the proposed method
through numerical experiments in image deblurring.

Index Terms— Total variation (TV), weighted TV,
SPIRAL-TVp, photon-limited imaging, Poisson noise

1. INTRODUCTION

In photon-limited imaging regimes, the number of photons
received at the camera lens is relatively low. Such situations
occur in nuclear medicine [1], night vision, and astronomy
[2, 3]. Data in these applications are collected by counting
discrete independent events and are accurately modeled using
a Poisson noise model [4]:

y ∼ Poisson(Af∗),

where f∗ ∈ Rn
+ is the true signal or image of interest, A ∈

Rm×n
+ is the linear projection matrix, and y ∈ Zm

+ is a vector
of observed photon counts.

Under the Poisson model, an unknown signal f∗ is es-
timated by minimizing the negative Poisson log-likelihood
function which is derived using the maximum likelihood prin-
ciple. This inverse minimization problem is ill-posed if the di-
mension of the measurement y is smaller than the dimension
of the unknown signal f∗. Therefore, various penalization
schemes are usually incorporated to pose the problem better.
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When the signal to be reconstructed is known to be sparse
in the canonical basis, it can be recovered accurately using
a nonconvex `p-norm regularization technique [5]. However,
when the image is not sparse, a different regularization must
be employed. The total variation (TV) seminorm penalty [6]
has been commonly used as a sparsity measure and has been
shown to be very effective as a regularization term for im-
age reconstruction. More specifically, the TV seminorm mea-
sures the first-order difference between adjacent pixels in im-
ages. Thus, an image with a small TV seminorm means that
generally, it has homogeneous signal levels with few abrupt
changes or edges. The recent work of Yan and Lu [7] general-
izes this TV norm to the p-th power (TVp), where 0 ≤ p ≤ 1,
by using a weighted TV minimization where the weights are
computed to approximate the TVp regularized problem lo-
cally.

In this paper, we propose to regularize the negative
Poisson log-likelihood function using the TVp penalization
method in [7]. Specifically, we use the SPIRAL approach [8]
to define a sequence of minimization subproblems with the
TVp penalty. These subproblems are solved using the FISTA
TV-based denoising method [9]. We explore the effectiveness
of the proposed method through numerical experiments in
image deblurring.

2. PROBLEM FORMULATION

2.1. Sparse Poisson Intensity Reconstruction

Under the inhomogeneous Poisson process model, the Pois-
son intensity reconstruction problem has the following con-
strained minimization form:

minimize
f∈Rn

Φ(f) ≡ F (f) + τ pen(f) (1)

subject to f � 0,

where τ > 0, F (f) is the negative Poisson log-likelihood
function

F (f) = 1TAf −
m∑
i=1

yi log(eTi Af + β),

where 1 is an m-vector of ones, ei is the ith canonical basis
unit vector, β > 0 (typically β � 1) and pen : Rn −→ R is a
penalty function (see e.g., [10]).
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This minimization problem can be solved by minimizing a
sequence of easier subproblems. In [8], F (f) is approximated
by second-order Taylor series expansion, where the Hessian
in the Taylor series is replaced by a scaled identity matrix αkI,
where αk > 0 (see e.g., [11, 12]). A simple manipulation
to this quadratic approximation will lead into a sequence of
subproblems of the form

fk+1 = arg min
f∈Rn

1

2
‖ f − sk ‖22 +

τ

αk
pen(f) (2)

subject to f � 0,

where
sk = fk − 1

αk
∇F (fk)

(see [8] for details).

2.2. Total Variation Regularization

The total variation seminorm is often used to promote sparsity
in the gradient of an image, meaning the reconstructed image
has very few abrupt changes in adjacent pixel intensities. The
penalty function pen(f ) in (2) can thus be replaced by ‖f‖TV1

and the subproblem can be rewritten of the form

fk+1 = arg min
f∈Rmn

1

2
‖ f − sk ‖22 +

τ

αk
‖f‖TV1 (3)

subject to f � 0,

If f ∈ Rmn
+ is a m × n image, the anisotropic TV seminorm

of f is given by

‖f‖TV(A)
1

=

m−1∑
i=1

n∑
j=1

|fi,j − fi+1,j |+
m∑
i=1

n−1∑
j=1

|fi,j − fi,j+1|,

while the isotropic TV seminorm of f is

‖f‖TV(I)
1

=

m−1∑
i=1

n−1∑
j=1

√
(fi,j − fi+1,j)2 + (fi,j − fi,j+1)2

+

m−1∑
i=1

|fi,n − fi+1,n|+
n−1∑
j=1

|fm,j − fm,j+1|.

In [8], the TV-based nonnegative denoising subproblem (3) is
solved using the fast gradient projection FISTA algorithm [9].

2.3. p-th Power Total Variation Regularization using It-
erative Reweighting

We now propose to regularize the negative Poisson log like-
lihood function in (1) using a p-th power total variation [7],
denoted by TVp (0 ≤ p ≤ 1). Then the sequence of subprob-
lems has the following form

fk+1 = arg min
f∈Rmn

1

2
‖ f − sk ‖22 +

τ

αk
‖f‖TVp

(4)

subject to f � 0,

where ‖f‖TVp
is defined as the anisotropic TV seminorm

‖f‖TV(A)
p

=

m−1∑
i=1

n∑
j=1

|fi,j−fi+1,j |p +

m∑
i=1

n−1∑
j=1

|fi,j−fi,j+1|p,

or as the isotropic TV seminorm

‖f‖TV(I)
p

=

m−1∑
i=1

n−1∑
j=1

√
(fi,j−fi+1,j)2p + (fi,j−fi,j+1)2p

+

m−1∑
i=1

|fi,n−fi+1,n|p +

n−1∑
j=1

|fm,j−fm,j+1|p.

Note that when p < 1, both TVp penalty functions are non-
convex, making the global minimum of (4) difficult to trace.
In [7], the minimization of the nonconvex problem (4) is
accomplished through the convexification of the nonconvex
penalty function ‖f‖TVp

using a reweighting strategy. More
specifically, a weighted TV seminorm is used to approximate
the anisotropic TV seminorm

‖f‖TV(A)
w

=

m−1∑
i=1

n∑
j=1

αi,j |fi,j − fi+1,j |

+

m∑
i=1

n−1∑
j=1

βi,j |fi,j − fi,j+1|,

as well as the isotropic TV seminorm

‖f‖TV(I)
w

=

m−1∑
i=1

n−1∑
j=1

√
(αi,j(fi,j − fi+1,j))2 + (βi,j(fi,j − fi,j+1))2

+

m−1∑
i=1

αi,n|fi,n − fi+1,n|+
n−1∑
j=1

βm,j |fm,j − fm,j+1|.

In the above weighted TV definitions, αi,j > 0 and βi,j >
0 are coefficients whose values are computed using f in the
previous iterate k:

αi,j = (|f (k)i,j − f
(k)
i+1,j |+ ε)(p−1), (5)

βi,j = (|f (k)i,j − f
(k)
i,j+1|+ ε)(p−1), (6)

where ε > 0 to prevent the weights from being arbitrary large.
By substituting (5) and (6) for αi,j and βi,j respectively in
the weighted TV definitions, it can be shown that ‖f‖TV(A)

w
≈

‖f (k)‖TV(A)
p

and ‖f‖TV(I)
w
≈ ‖f (k)‖TV(I)

p
(see [7] for details).

2.4. Modified Dual Approach with Weighted TV Norms

Using the weighted TV functions as defined in the Section
2.3, we now show how to modify the FISTA approach of dual
problem construction [9, 13]. In particular, we use the exact
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same set of notations used in [9] (Sec. 4.1) with the exception
of the linear operator L .

Let PA be the set of matrix-pairs (p1,q1) where p1 ∈
R(m−1)×n and q1 ∈ Rm×(n−1) satisfying

|pi,j | ≤ 1, i = 1, . . . ,m− 1, j = 1, . . . , n,

|qi,j | ≤ 1, i = 1, . . . ,m, j = 1, . . . , n− 1.

Similarly, let PI be the set of matrix-pairs (p2,q2) where
p2 ∈ R(m−1)×n and q2 ∈ Rm×(n−1) that satisfy

p2i,j + q2i,j ≤ 1, i = 1, . . . ,m− 1, j = 1, . . . , n− 1,

|pi,n| ≤ 1, i = 1, . . . ,m− 1,

|qm,j | ≤ 1, j = 1, . . . , n− 1.

We redefine the linear operator L : R(m−1)×n×Rm×(n−1) −→
Rm×n as follows:

L (p`,q`)i,j = αi,jpi,j−αi−1,jpi−1,j+βi,jqi,j−βi,j−1qi,j−1,

where ` is 1 or 2, and we assume that p0,j = pm,j = qi,0 =
qi,n ≡ 0 for i = 1, . . . ,m, j = 1, . . . , n. The opera-
tor L T : Rm×n −→ R(m−1)×n × Rm×(n−1) is given by
L T (f) = (p`,q`), where pi,j = fi,j − fi+1,j and qi,j =
fi,j − fi,j+1. Since our subproblems (4) are non-negatively
constrained, PC is the orthogonal projection operator on to
the set C = [0,∞).

Now note that the following two relations
α|x| = max

p
{αxp : |p| ≤ 1},√

α2x2 + β2y2 = max
p1,p2

{αxp1 + βyp2 : p21 + p22 ≤ 1},

hold true for weights α > 0 and β > 0. Therefore, the
anisotropic weighted TV seminorm can be written as the max-
imization problem

‖f‖TV(A)
w

= max
(p1,q1)∈PA

T1(f ,p1,q1),

where

T1(f ,p1,q1) =

m−1∑
i=1

n∑
j=1

αi,j(fi,j − fi+1,j)pi,j

+

m∑
i=1

n−1∑
j=1

βi,j(fi,j − fi,j+1)qi,j .

Similarly, the isotropic weighted TV seminorm also can be
written as the maximization problem

‖f‖TV(I)
w

= max
(p2,q2)∈PI

T2(f ,p2,q2),

where

T2(f ,p2,q2) =

m−1∑
i=1

n−1∑
j=1

[αi,j(fi,j − fi+1,j)pi,j

+βi,j(fi,j − fi,j+1)qi,j ]

+

m−1∑
i=1

αi,n(fi,n − fi+1,n)pi,n

+

n−1∑
j=1

βm,j(fm,j − fm,j+1)qm,j .

With the above defined notations, we have

T1(f ,p1,q1) = Tr(L (p1,q1)T f),

T2(f ,p2,q2) = Tr(L (p2,q2)T f).

Hereafter we can follow the same procedure explained in [9]
to obtain the dual problem with the weighted TV norm. This
dual problem is iteratively solved using a fast gradient projec-
tion method (see [9] for more details).

3. NUMERICAL EXPERIMENTS

In this section, we demonstrate the effectiveness of the pro-
posed algorithm, which we call SPIRAL-TVp. In particular,
we consider an image deblurring problem for which TV norm
regularization is highly suitable.

In this experimental setup, we use the Shepp-Logan phan-
tom image of size 128× 128 available in the MATLAB’s im-
age processing toolbox as the true image f∗ (see Fig. 1(a)).
The true detector blurred image (see Fig. 1(b)) was obtained
by Af∗, where A is a blurring operator (f∗ is convolved with
some blur matrix). Finally, a Poisson noisy observation ma-
trix of size 128×128 is simulated by MATLAB’s poissrnd
function. The Poisson noisy observation matrix is shown in
Fig. 1(b), where the mean photon count is 45.8 with a maxi-
mum of 398.
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(a) Truth image (f*) (b) True detector 
    intensity (Af*)

(c) Observed photon
         counts (y)

Fig. 1. Experimental setup: (a) Shepp-Logan head phantom
as true image, (b) blurred phantom image, (c) Poisson noisy
phantom image with mean count 45.8.

We implemented the SPIRAL-TVp algorithm in MAT-
LAB R2013a (on a PC with Intel Core i7 2.7GHz Processor
with 8GB memory) by modifying existing codes of the SPI-
RAL method [14] and the TV-based FISTA denoising method
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(a) SPIRAL-TV1
 PSNR = 30.70 dB   
      

(d) SPIRAL-TV0.8
  PSNR = 30.95 dB  

(b) Truth - SPIRAL-TV1
          RMSE = 11.90% 
         

(e) Truth - SPIRAL-TV0.8
         RMSE = 11.57% 
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(c) Zoomed region
         

(f) Zoomed region
         

Fig. 2. Anisotropic TV based reconstructions and error im-
ages. Top row: (a) SPIRAL-TV1 reconstruction, (b) magni-
tude of error between the true image and the SPIRAL-TV1

estimated image, (c) SPIRAL-TV1 reconstruction has more
artifacts. Bottom row: (d) SPIRAL-TV0.8 reconstruction, (e)
magnitude of error between the true image and the SPIRAL-
TV0.8 estimated image, (f) SPIRAL-TV0.8 reconstruction has
more homogeneous signal levels.

[15]. SPIRAL-TVp follows a warm-start strategy, where we
start the method by solving the p = 1 case first, and then
using its solution to initiate the next problem with a smaller
p value, say, p = 0.9. (This can be viewed as a homotopy
or continuation method.) In Eqs. (5) and (6), ε = 10−13 in
our numerical experiments. We run the algorithm until the
relative difference between consecutive iterates converged to
‖fk+1 − fk‖2/‖fk‖2 ≤ 10−8 with a minimum of 50 itera-
tions. For each p-value, the regularization parameter in (4)
is optimized to get minimum RMSE value. Finally, we com-
pared SPIRAL-TVp reconstruction with SPIRAL-TV1 recon-
struction for both isotropic and anisotropic TV types using
RMSE values and peak signal-to-noise ratios (PSNR (dB) =
10 log10(max(f∗)2/MSE)).

4. RESULTS

The results of the experiments described in the Section 3 for
anisotropic and isotropic TV regularization are presented in
Figs. 2 and 3 respectively. For the anisotropic TV regulariza-
tion, the SPIRAL-TV0.8 reconstruction has RMSE = 11.57%
and PSNR =30.95 dB while the reconstruction for SPIRAL-
TV1 reconstruction has RMSE = 11.90% and PSNR = 30.70
dB. For the isotropic TV regularization, the SPIRAL-TV0.8

reconstruction has RMSE = 14.45% and PSNR = 29.02 dB
while the reconstruction for SPIRAL-TV1 reconstruction has
RMSE = 14.80% and PSNR = 28.80 dB. In both cases and

20

40

60

80

100

120

20

40

60

80

100

120

(a) SPIRAL-TV1
  PSNR = 28.80 dB   

(d) SPIRAL-TV0.8
  PSNR = 29.02 dB 

(b) Truth - SPIRAL-TV1
        RMSE = 14.80% 

(e) Truth - SPIRAL-TV0.8
        RMSE = 14.45% 
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(c) Zoomed region
         

(f) Zoomed region
         

Fig. 3. Isotropic TV based reconstructions and error images.
Top row: (a) SPIRAL-TV1 reconstruction, (b) magnitude of
error between the true image and the SPIRAL-TV1 estimated
image, (c) SPIRAL-TV1 reconstruction has more artifacts.
Bottom row: (d) SPIRAL-TV0.8 reconstruction, (e) magni-
tude of error between the true image and the SPIRAL-TV0.8

estimated image, (f) SPIRAL-TV0.8 reconstruction also has
more homogeneous signal levels.

both metrics, the SPIRAL-TV0.8 reconstructions show im-
provement over the SPIRAL-TV1 reconstructions. Further-
more, the SPIRAL-TV0.8 reconstructions recovered the ac-
tual gray area in the phantom body without losing the edge
details and has less prominent cloud noise-like texture (see
red zoomed areas in Fig. 2 (c) and (f) and Fig. 3 (c) and (f)).

5. DISCUSSION AND CONCLUSION

In this paper, we have formulated a TVp regularized nega-
tive log-likelihood function for photon-limited imaging prob-
lems. This nonconvex TVp regularization problem is solved
in a convex setting by using a reweighting strategy for each
iteration. The SPIRAL-TV1 solution is used as the warm
initial point in the proposed SPIRAL-TVp method, and we
proceed with this strategy by reducing the p-value. Under
the warm-start strategy, the proposed SPIRAL-TVp algorithm
will converge to a reasonably good local solution that is more
accurate than the SPIRAL-TV1 global solution. Since the
anisotropic TV is related to the `1-norm, the SPIRAL-TVp

with the anisotropic TV leads to more accurate results than
with the isotropic TV. In our experience with this particu-
lar data set, there is no any significant improvement in re-
constructions for p-values less than 0.8. While the proposed
SPIRAL-TVp method leads to more accurate results with less
artifacts, it requires more computational effort than SPIRAL-
TV1 due to the iterative nature of the warm-start strategy.
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