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ABSTRACT

In this paper, a partially adaptive two dimensional (2D) trans-

mit beamforming approach is proposed to enable search-free

azimuth and elevation direction of arrival (DOA) estimation

in MIMO radar. Specifically, the 2D transmit array is non-

adaptively partitioned into a number of subarrays. Then, a

beamspace matrix is adaptively designed for each subarray,

such that the beampatterns corresponding to each matrix have

the exact same magnitude. By constraining the beams to

be transmitted from different subarrays, multiple data in-

variances are enforced independently of the receive array

geometry. The invariances are then exploited by search-free

DOA estimation methods. Simulations validate the proposed

approach.

Index Terms— Adaptive beamforming, MIMO radar,

search-free DOA estimation methods

1. INTRODUCTION

Under the concept of MIMO radar [1]– [3] a variety of

questions on the topics ranging from waveform design

and selection [5], to spatial configurations of radar sys-

tems [3], [6]– [9], and transmit beamforming design [8]– [11]

have been investigated. Recently, several transmit beam-

forming approaches have been proposed to allow the use of

low-complexity search-free direction of arrival (DOA) meth-

ods both in one and two dimensions (2D), while relaxing

requirements on array geometries [12]– [14]. There is sub-

stantial motivation for transmit beamforming with reduced

waveform diversity. Firstly, it was shown in [9] that the

performance of a MIMO radar system which uses less than

full waveform diversity and provides transmit pre-processing

gain is superior to that of a MIMO radar system which uses

full waveform diversity and provides no pre-processing gain.

Further, as the number of antenna elements in 2D transmit

arrays can be very large, full waveform diversity presents sig-

nificant issues including increased computational complexity

at the receiver.

In this paper, a 2D transmit beamformer for planar ar-

rays is designed with the specific goal of creating a data set

at the receive array with multiple invariances independently

of the receive array geometry. This is altogether a different

scenario than the one investigated in [14], but with the same

goal in mind. To do this, we use a partially adaptive approach:

that is, the optimization is constrained to only consider a sub-

set of transmit antenna elements. A simple transformation

is introduced which creates a set of identical beams which

are transmitted from different subarrays. Since each beam

has the same beampattern, but originates from a linearly dis-

placed subarray, the data which is collected from each beam

is related to that of the other beams through a phase rotation

which depends directly on the target location. Therefore, we

can use all beams to estimate both the elevation and azimuth

of a target using search-free DOA estimation methods.

2. SYSTEM MODEL

Consider a monostatic MIMO radar system consisting of a

uniform rectangular array (URA) with P × Q antenna ele-

ments acting as a transmitter, and a planar receive array with

R antenna elements in an arbitrary configuration. The PQ×1
transmit array response vector is defined as

a(θ, φ) = vec
(

u(θ, φ)vT (θ, φ)
)

(1)

where [u(θ, φ)]p = ej2πp·dx sin θ cosφ, p ∈ {0, 1, · · · , P − 1}
and [v(θ, φ)]q = ej2πq·dy sin θ sinφ, q ∈ {0, 1, · · · , Q − 1}
correspond to the antenna response coefficients for displace-

ments p · dx and q · dy from a reference element respec-

tively, and (·)T is the vector transpose operator. A linear

combination of K orthogonal baseband waveforms ψ(t) =
[ψ1(t), . . . , ψK(t)]T is transmitted, where K ≪ PQ, which

permits energy focussing over a desired sector Θ = [θ1 θ2]
in the elevation domain and Φ = [φ1 φ2] in the azimuthal

domain.

The signal at the transmitter within a single slow-time

pulse, for a given angular direction (θ, φ), θ ∈ [−π
2 ,

π
2 ] and

φ ∈ [0, 2π], at time t is expressed as

s(t) = a(θ, φ)HWψ(t) (2)

where W is a PQ×K complex valued beamforming weight

matrix with wn,k corresponding to the weighting coefficient
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of waveform k at antenna element n = pq and (·)H is the

Hermitian transpose operator.

The magnitude of the beampattern in the direction (θ, φ)
is given by

G(θ, φ) =

∫

T

s(t)sH(t)dt

= aH(θ, φ)W

(
∫

T

ψ(t)ψ∗(t)dt

)

WHa(θ, φ)

= aH(θ, φ)WWHa(θ, φ) = ‖WHa(θ, φ)‖2 (3)

where
∫

T
ψ(t)ψ∗(t)dt = Ik, as ψ(t) are chosen to be or-

thogonal, T is the period of a slow-time pulse, ‖ · ‖ is the

Euclidean norm, and (·)∗ is the complex conjugate.

The presence of L targets in a Doppler-range bin follow-

ing a Swerling II model results in a noisy R× 1 receive array

observation vector at a time t and pulse τ which can be ex-

pressed as

x(t, τ) = BΣ(τ)AHWψ(t) + z(t, τ) (4)

where B , [b(θ1, φ1), . . . ,b(θL, φL)], A , [a(θ1, φ1), · · ·
. . . , a(θL, φL)], Σ(τ) , diag([β1(τ), . . . , βL(τ)]), z(t, τ)
is an R × 1 zero mean Gaussian random vector with co-

variance Q = σ2IR, and βl(τ) is the complex radar reflec-

tion coefficient corresponding to the l-th target. The oper-

ator diag(·) creates a diagonal matrix with entries equal to

the elements of a vector. The receive array response vectors

are b(θl, φl) , [ej2πξ[γl,ζl]
T

] where ξ is an R × 2 matrix

containing the x and y coordinates of a receiver element r,
γl , sin θl cosφl, and ζl , sin θl sinφl. The receive antenna

element coordinates in ξ are defined relative to a reference

element in terms of the carrier wavelength λc, but are other-

wise arbitrary. Therefore, the first row of ξ is the zero row

vector. The columns of the matrices A and B are the array

response vectors for a target located at direction (θl, φl) for

the transmitter and receiver respectively.

Defining the K × N matrix Ψ , [ψ(1), . . . ,ψ(N)],
where N is the number of fast-time samples of the K orthog-

onal waveforms, the result of the matched filter operation at

the receiver over a slow-time pulse τ is expressed as

y(τ) = vec

(

1

N
BΣ(τ)AHWΨΨH +

1

N
z(t, τ)ΨH

)

= vec

(

BΣ(τ)AHW +V(τ)

)

(5)

=

(

(WHA)⊙B

)

c(Σ(τ)) + v(τ) (6)

where vec(·) is the vectorization operator (which stacks the

columns of a matrix on top of one another into a vector), ⊙
is the column-wise Khatri-Rao product, c(Σ(τ)) is a column

vector consisting of the diagonal entries of Σ(τ), and v(τ),
N−1vec(z(t, τ)ΨH).

The noisy virtual data vectors (5) have dimension of

KR× 1 and form a KR× I matrix

Y, [y(1), . . . ,y(I)] =

(

(WHA)⊙B

)

C(Σ) +V (7)

where I is the number of slow-time pulses in a scan, C(Σ)
has columns c(Σ(τ)), and V has columns v(τ).

In the following section, it will be shown that by placing

a specific structure on W it is possible to guarantee multiple

invariances within the received data while focussing energy

from the transmitter into a desired sector. As such, not only

do we benefit from energy focussing at the transmitter, but it

is also possible to use search free DOA estimation techniques

at the receiver without the requirement of a specific receiver

array geometry.

3. BEAMSPACE DESIGN

The design of W is performed in two stages. First, a

beamspace matrix U0 = [u1, . . . ,uk], with full column

rank K , is designed over a spatial sector Θ = [θ1 θ2] and

Φ = [φ1 φ2] using only the first (P − 1) rows and (Q − 1)
columns of the transmit array. Then, a simple transforma-

tion is performed on U0 to produce beamforming matrices

with identical beampatterns, but which correspond to differ-

ent subarrays. The number of orthogonal waveforms K is

selected to be the number of dominant eigenvalues of the

matrix

D(θ, φ),

∫

Θ

∫

Φ

a(θ, φ)aH (θ, φ)dθdφ. (8)

According to [13], K ≪ PQ, given a sector area {Θ,Φ}.

The initial design of U0 can be stated as the following

optimization problem

min
u1,...,uK

max
θ,φ

∣

∣

∣

∣

∣

Gd(θ, φ)−

K
∑

k=1

uH
k a(θ, φ)aH (θ, φ)uk

∣

∣

∣

∣

∣

(9)

s.t.

K
∑

k=1

∣

∣U[jk]

∣

∣

2
=

E

4KPQ
, j ∈ {1, · · · , (P − 1)(Q− 1)}

where Gd(θ, φ) is an ideal beampattern over the desired sec-

tor {Θ,Φ}. (9) is a non-convex quadratically-constrained

quadratic optimization problem. It can be solved via a semi-

definite programming relaxation approach, [13]– [15] by first

introducing the new variables Xk , uku
H
k , k = 1, . . . ,K ,

and relaxing the rank constraint by requiring only that Xk

be positive semidefinite. Then, using the technique of ran-

domization a rank 1 solution can be extracted from the signal

cross-correlation matrix Xk. This will yield a beamforming

matrix of dimension (P − 1)(Q− 1)×K .

It is trivial to show that a matrix U′

0 of dimension PQ ×
K , with an identical beampattern to that of U0, can be con-

structed by placing zeros in the spots corresponding to the an-

tenna elements which were omitted from the original design
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of U0. The matrix U′

0 then denotes a beamforming matrix

where K beams are transmitted from the first P − 1 rows

and Q − 1 columns of a transmit array of dimension P ×Q.

Given the shape of the transmit array, it is simple to show that

by shifting the positions of the zeros in U′

0, the exact same

beampattern can be achieved by subarrays containing the first

P−1 rows and lastQ−1 columns, the last P−1 rows and the

first Q− 1 columns, and finally the last P − 1 and last Q− 1
columns of the transmit array. These three matrices are de-

noted as U′

1, U′

2, and U′

3, respectively. With these matrices

defined, it is easy to show that the following is true

aH(θ, φ)U′

0= ej2πdx sin θ cosφ
(

aH(θ, φ)U′

1

)

(10)

= ej2πdy sin θ sinφ
(

aH(θ, φ)U′

2

)

= ej2π(dx sin θ cosφ+dy sin θ sinφ)
(

aH(θ, φ)U′

3

)

.

The beamforming matrix W is then defined as W ,

[U′

0,U
′

1,U
′

2,U
′

3] with an overall dimension of PQ × 4K .

Clearly, in the original design problem, K must be no larger

than PQ/4. It should be stated that the partially adaptive ap-

proach described in this section implies that only (P−1)(Q−
1) elements operate at full power. This power loss, however,

is a strictly decreasing function of transmit array size.

4. SEARCH FREE DOA ESTIMATION

Given the structure (10) imposed on the beamspace matrix

W, let us turn our attention to (5). Rewriting the noiseless

matrix before vectorization allows a clear illustration of the

effect of the proposed structure of W on DOA estimation.

Specifically, we can write that

BΣ(τ)AHW = BΓ (11)

where Γ , Σ(τ)AHW. The matrix Γ is the source signal

matrix, and has dimension L × 4K . In the following, Γ0 =
Σ(τ)AHU′

0 is the source signal matrix corresponding to K
beams emanated from the first (P − 1) rows and (Q − 1)
columns of the transmit array. Using the relations (10) we

define matrices Ωi, i ∈ {0, 1, 2, 3} as the L × L diagonal

matrices with the l-th diagonal entry of Ωi being the complex

exponential in (10) which relates aH(θ, φ)U′

0 to aH(θ, φ)U′

i.

The matrix Ω0 is obviously the identity matrix. Then (11) can

be expressed as the following block partitioned matrix

BΓ = B

[

Ω0Γ0 Ω1Γ0 Ω2Γ0 Ω3Γ0

]

(12)

=

[

BΩ0 BΩ1 · · · BΩ3

]

bdiag4(Γ0) (13)

where bdiagm(·) takes a single matrix as an argument, and

creates a block diagonal matrix whose m blocks are equal

to its argument. The matrix BΩ0 is simply the receiver re-

sponse matrix to L targets. The virtual receiver response ma-

trices BΩ1, BΩ2, and BΩ3 are exactly the receiver response

matrices to L targets, for identical receive arrays that are lin-

early displaced from our actual receiver by [dx, 0], [0, dy],
and [dx, dy], respectively. The source signal matrix Γ0 is a

common factor for each. From (12) it is visible that the pro-

posed structure for W enforces an algebraic structure on Y

which can be exploited by search-free algorithms for DOA

estimation, including, but not limited to, ESPRIT (Estima-

tion of Signal Parameters through Rotational Invariance Tech-

niques) [16], [17]. Further, it should be noted from (7) that the

matrix Y has rank L if the targets are incoherent. A proof of

this statement is left for the journal version.

Matrix Y has dimension 4RK×I . After defining the ma-

trix selection operator Fj(·) which selects the (jM/4 + 1)–
M/4(j + 1) rows from an arbitrary matrix with M rows,

where j ∈ {0, 1, 2, 3}, Y and a new matrix Y′ can be ex-

pressed as

Y =









F0(Y)
F1(Y)
F2(Y)
F3(Y)









,Y′ =









F0(Y)
F2(Y)
F1(Y)
F3(Y)









. (14)

Forming the cross correlation matrices RY = I−1YYH

and RY′ = I−1Y′Y′H , and performing ESPRIT on both

will yield a vector of L phase arguments which are directly

proportional to ζl and γl. Defining a complex number zl =
γl + jζl the angle estimates are given by φl = arctan(ζl/γl),
and θl = |zl|.

5. SIMULATIONS

To evaluate the DOA estimation performance of the proposed

method, we consider both the root mean square error (RMSE)

of the estimates, and the probability of resolving two closely

located targets. The RMSE is calculated as

RMSE=

√

√

√

√

1

M

M
∑

m=1

(

1

L

L
∑

l=1

‖ρ̂l − ρl‖2

)

(15)

where M is the number of Monte Carlo trials, ρl = [θl φl]

are the target locations, and ρ̂l = [θ̂l φ̂l] are their estimates. If

‖ρ̂l − ρl‖ ≤ ‖ρ1 − ρ2‖/2, l ∈ {1, 2} then the two targets are

said to be resolved.

We compare the performance of the proposed method

with that of MIMO radar using uniform transmit power, and

full waveform diversity (hereafter referred to as conventional

MIMO radar). Both methods are tested using the same sys-

tem configuration of an 11 × 11 URA with antenna element

spacing λc/2 acting as the transmitter, and a planar array

with randomized geometry and 8 antenna elements acting

as the receiver. That is, the x and y coordinates of each

receive antenna element are randomly and independently

drawn from a uniform distribution U [0, 4λc]. Both methods

use exponential harmonic waveforms. The proposed method
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uses 32 exponential harmonic waveforms, transmitted in 4
groups of 8 waveforms each. The conventional MIMO radar,

having full waveform diversity, transmits 121 exponential

harmonic waveforms. The beampattern for the proposed

method is designed over a desired sector of Θ = [30o 50o]
and Φ = [100o 120o].

While designing the transmit beamspace matrix, we al-

lowed a transition region of 10o width around the mainlobe in

the elevation domain, and 20o in the azimuthal domain. Oth-

erwise, the side-lobes of the beampattern are forced to be as

low as possible, while matching the passband of the designed

beampattern as closely to that of the desired one as possi-

ble. We then extract the beamspace matrix U0 by selecting

the best of 5000 random candidate matrices. The beamspace

matrix W is then constructed. Figs. 1 and 2 show the beam-

pattern while looking directly at the elevation and azimuthal

aspect, respectively.

To compare first the RMSE and second, the probability

of target resolution for the two methods tested, two separate

scenarios are considered. In the first, a single target following

a Swerling II model is placed at ρ = [47o 106o] In the second,

two targets following a Swerling II model are placed at ρ1 =
[47o 106o] and ρ2 = [48o 107o]. Figs. 3 and 4 shows the

comparison between the proposed methods tested over 500
Monte Carlo trials as a function of signal to noise ratio (SNR),

which varies from −30 to 30 dB in 5 dB increments. The

proposed ESPRIT-based algorithm is used to extract the angle

estimates.

As can be seen in Figs. 3 and 4, the proposed method en-

joys significant performance benefits compared to the conven-

tional MIMO radar in both RMSE and probability of target

resolution. The most noticeable difference lies in the prob-

ability of target resolution, where the gap between the pro-

Fig. 1. Transmit Beampattern: elevation aspect.

Fig. 2. Transmit beampattern: azimuthal Aspect.

posed method and the conventional MIMO radar is as wide

as 10 dB. In terms of RMSE, as SNR climbs above 10 dB, the

gap between the two methods begins to close. However, while

the RMSE performance of the conventional MIMO radar is

close to that of the proposed method at high SNR, the pro-

posed method still benefits from a significantly lower com-

putational complexity. The calculations required per iteration

for the conventional MIMO radar are O((PQR)3) while the

calculations required for proposed method are O((4KR)3).
With the configuration used in this example, the conventional

MIMO radar requires about 50 times the calculations of the

proposed method.
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Fig. 3. RMSE over 500 trials, from -30 to 30 dB.
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Fig. 4. Probability of Source Resolution, 500 trials, from -30

to 30 dB.

6. CONCLUSION

The problem of 2D transmit beamforming for planar arrays

with the specific goal of creating a data set at the receiver

with multiple invariances independently of the receive array

geometry has been considered. A partially adaptive approach

which creates a set of identical beams that are transmitted

from different subarrays has been used. Rotational invariance

between the beams has been shown to allow for existence of

search free DOA estimation methods of both azimuth and ele-

vation angles. RMSE and probability of target resolution have

been used to compare the proposed method with the conven-

tional MIMO radar. The proposed method has been shown to

have a significant advantage in accuracy and resolution, while

having the additional benefit of substantially reduced compu-

tational complexity.
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