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Abstract – In this paper we propose an adaptive design strat-

egy for the measurement matrix for applying Compressed Sens-

ing (CS) to Direction Of Arrival (DOA) estimation with antenna

arrays. Instead of choosing the coefficients of the compression

matrix randomly, we propose a systematic design methodology

for constructing a measurement matrix that focuses the array

towards a specific area of interest and thereby achieves a supe-

rior DOA estimation performance. The focusing is performed

in a sequential manner, i.e., we start with a uniform measure-

ment design from which regions of interest can be extracted that

the subsequent measurements then focus on. By continuously

updating these target regions, gradual movement of the sources

can also be tracked over time. Numerical results demonstrate

that the focused measurements possess a superior SNR leading

to significantly enhanced DOA estimates.

Keywords: Compressive Sensing, DOA Estimation, Measurement

Design

1. INTRODUCTION

Direction of arrival (DOA) estimation is a task required for various

applications, including biomedical imaging, communications, chan-

nel modeling, tracking and surveillance in radar, and many others

[1]. Recent advances in the field of Compressed Sensing (CS) [2, 3,

4] have given new research focus to the field of sparse recovery algo-

rithms. This has led to the exploration of a strong link between DOA

estimation and sparse recovery based on the fact that a superposition

of planar wavefronts admits a sparse representation [5]. Based on

this idea, sparse recovery has been considered as a tool for DOA es-

timation in applications like localization of the transmitting sources

[6], channel modeling [7], tracking and surveillance in radar [8], and

many others. Many powerful sparsity-based DOA estimation algo-

rithms have been proposed in recent years [9, 10, 11, 12]. Compared

to existing parameter estimation algorithms, sparsity-based DOA es-

timation techniques may provide some advantages, such as, being in-

sensitive to source correlation, allowing arbitrary array geometries,

working with a single snapshot, and providing certain guarantees for

obtaining a global optimum in polynomial time [13].

The fact that the underlying RF signals possess a sparse repre-

sentation suggests that CS can be applied for their acquisition [14,

15]. To implement the CS paradigm in the spatial domain, linear

combinations of M passive antenna elements are formed via an ana-

log combining network which reduces the antenna to m < M chan-

nels that are actively sampled and digitized. In so doing, the hard-

ware complexity is comparable to an m-element antenna array while

being able to cover a much larger aperture than a traditional λ/2-

spaced array. If the measurement kernel is appropriately chosen,

the signal can be recovered from m < M measurements due to its

sparse representation in the angular domain.

Concerning the choice of the measurement kernels Φ for CS-

based DOA estimation, existing papers suggest a random choice,

e.g., drawing its elements from Gaussian or Bernoulli distribu-

tions [15]. These are popular choices in the CS context as they

allow to prove certain probabilistic theorems on the uniform support

recovery of the signals. However, in our recent paper [16] we have

shown that from an array processing perspective such a random

design is not the optimal choice for the DOA estimation task since it

may result in the effective array having certain blind spots (i.e., an-

gles from which the energy is severely attenuated) or high sidelobes

(which could be mistaken for spurious paths). We have proposed

a design of Φ that avoids these effects by optimizing the resulting

effective beam pattern. Mathematically, this problem shows striking

similarities to the beamspace design problem in array processing

[17, 18, 19, 20]. However, besides for a different motivation, we

also consider different criteria, e.g., a narrow autocorrelation with

a controlled sidelobe level for achieving a high resolution. In fact,

our results demonstrate that the optimized design leads to more

favorable spatial correlation functions and a significantly improved

DOA estimation performance.

In [16] our target was a static measurement matrix design that

yields an array with uniform sensitivity, which is a good choice if no

prior knowledge of the targets is available. In this paper, we extend

[16] towards an adaptive design of the measurement matrix that uses

the fact that for a slowly changing scene, the estimates from the pre-

vious snapshot provide prior information about the source locations

in the next snapshot. This fact can be utilized for building an adap-

tive measurement matrix design that focuses the array’s sensitivity

towards regions of interest where the targets are expected. In so

doing, the SNR and the effective resolution in these areas can be im-

proved, resulting in a superior DOA estimation performance. Based

on this idea, we propose a sequential measurement strategy which

starts with a measurement matrix designed for uniform sensitivity

(e.g., using the one proposed in [16]) and then gradually refines it to-

wards the regions of interest that have been identified in the collected

observations. Numerical simulations demonstrate that the focusing

design results in a significant performance improvement compared

to the uniform design.

2. DATA MODEL

We consider a system where an M -element antenna array is record-

ing a sequence of snapshots of its received RF signals with the goal

to find and monitor sources of RF transmissions (which could be

actively transmitting sources in a communication-type scenario, re-
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flecting sources in a surveillance/Radar-type scenario, or multipath

components). One particular snapshot is modeled as the superposi-

tion of K planar wavefronts impinging from the directions of arrival

(DOA) θk, k = 1, 2, . . . ,K. Mathematically, the observed output

signal at the M antenna ports can be expressed as

x(t) =
K
∑

k=1

a(θk) · sk(t) +w(t), (1)

where a(θ) ∈ C
M×1 is the array manifold as a function of the az-

imuth angle, sk(t) denotes the transmit signal of the k-th source,

and w(t) represents the additive measurement noise. Note that due

to target movement, the DOAs may change from snapshot to snap-

shot. However, this change is expected to be gradual so that the es-

timate from the current snapshot can be used as prior information in

the next snapshot. For simplicity, we consider an M -element half-

wavelength spaced uniform linear array (ULA) such that a(θ) =

[1, eµ, . . . , e(M−1)µ]T for µ = π · cos(θ). In order to be able

to resolve sources with closely spaced angles, a large antenna array

aperture is required. However, since the spatial sampling theorem al-

lows sensors to be spaced no more than half a wavelength apart, this

leads to a large required number of sensor elements M . Sampling

many antenna ports is costly, since it requires many RF chains with

costly components such as amplifiers, filters, and A/D converters.

In order to reduce the number of channels that have to be sam-

pled actively without any loss in aperture, it has therefore been sug-

gested to apply the Compressed Sensing (CS) framework to this set-

ting [15]. The application of CS is based on the sparsity of the signal

in the angular domain. In fact, we can rewrite (1) into a sparse for-

mulation given by

x(t) = A · s(t) +w(t), (2)

where A =
[

a(θ
(G)
1 ) . . . a(θ

(G)
N )

]

∈ C
M×N is the array man-

ifold sampled on a prespecified N -point sampling grid and s(t) ∈
C

N×1 is K-sparse, provided that the actual DOAs θk are on the sam-

pling grid. For details on the sampling grid, the reader is referred to

[5, 16].

Due to the sparse model (2) we know that x(t) can be recovered

from m < M linear measurements y(t) = Φ · x(t) ∈ C
m×1 if the

measurement kernel Φ ∈ C
m×M is suitably selected. In practice,

this operation can for instance be realized by an analog combining

network with adjustable phase shifters and amplifiers. The applica-

tion of Φ transforms our data model (1) into

y(t) =

K
∑

k=1

ã(θk) · sk(t) + w̃(t), (3)

where w̃(t) = Φ ·w(t) and ã(θ) = Φ ·a(θ). Consequently, the CS

operator Φ has effectively transformed the M -element array into an

m-port “CS-array” with a beam pattern given by ã(θ).
Therefore, the elements of Φ give us control over the effective

beam pattern of the CS-array. In our previous paper [16], we have

designed Φ to provide a CS-array with a uniform sensitivity, which

is desired for a generic direction finder with no prior information. In

this paper, we extend our previous work by considering the adapta-

tion of Φ over the snapshots in order to adapt the beam pattern of the

array to the prior knowledge of the scene. As we show such a design

allows the array to sequentially focus on certain regions of interest

and therefore provide a superior SNR and resolution in these areas.

3. MEASUREMENT DESIGN

In this section we introduce the proposed adaptive design of the

measurement matrix Φ. It is based on the effective array mani-

fold ã(θ) that is introduced in Section 2 and depends on Φ via

ã(θ) = Φ · a(θ). The main idea is to design Φ such that the spa-

tial correlation function r(θ1, θ2)
.
= ã(θ1)

H · ã(θ2) follows as close

as possible to a prespecified target T (θ1, θ2), i.e., a matrix Φ that

minimizes

e(Φ, θ1, θ2) = |r(θ1, θ2)− T (θ1, θ2)| (4)

The target T (θ1, θ2) is adapted to the current knowledge of the

scene. A uniform target function is used when no prior knowledge is

available. When regions of interest have been specified (e.g., via an

estimate of the angular power spectrum or a previous reconstructed

scene), the target can be adapted to focus on these regions in order to

provide a superior estimate (e.g., improved SNR and/or resolution).

To this end, an ideal uniform target function can be described by

Tuni(θ1, θ2) =

{

const θ1 = θ2

0 θ1 6= θ2
, (5)

where the first condition guarantees that the array gain is constant

for all angles (to make the array uniformly sensitive in all directions)

and the second condition asks for good cross-correlation properties

to tell signals from different directions apart.

On the other hand, a target function that focuses in an interval Θ
is given by

TΘ(θ1, θ2) =

{

const θ1 = θ2 ∈ Θ

0 θ1 6= θ2
, (6)

where the interval Θ can for instance be describe by a center cθ and

a width wθ via Θ =
[

cθ −
wθ

2
, cθ +

wθ

2

]

.

In order to find a matrix Φ that minimizes (4), we utilize a mech-

anism introduced in [16] which we restate here for convenience. It is

based on the following steps: First, to eliminate the continuous vari-

ables θ1 and θ2, we consider the N -point sampling grid θ
(G)
n , n =

1, 2, . . . , N used for CS and define the N × N matrices R and T

according to R(i,j) = r(θ
(G)
i , θ

(G)
j ) and T(i,j) = T (θ

(G)
i , θ

(G)
j ).

Note that R can be written as R = AH · ΦH · Φ · A. The de-

viation between the sampled spatial correlation function R and its

target T can then be measured via a suitable norm of the error ma-

trix E
.
= R − T . A closed-form solution for Φ can be obtained if

we choose the Frobenius norm of E. In particular, if we let

Φopt = argmin
Φ

‖E‖2F . (7)

we can obtain Φopt via the following procedure: Let S = A·T ·AH

and let Sm be a rank-m-truncated version of S obtained by setting

its N−m smallest eigenvalues to zero. Then every square-root factor

of Sm (i.e., any Φ satisfying Φ
H
Φ = Sm) is an optimal solution to

(7) [16].

Since Φopt can be obtained in closed form with a very low com-

putational complexity, it is feasible to adapt it during the observa-

tions, i.e., the target can be refined to the current knowledge of the

scene. We propose to apply the following adaptation mechanism:

1. Begin by scanning the scene with a matrix Φ designed for a

uniform target Tuni.
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2. Identify regions of interest based on, e.g., an estimate of the

angular power spectrum or a full reconstruction of the scene

based on the initial observations(s).

3. Define a focusing region Θ as the union of all regions of in-

terest.

4. Modify Φ by solving (7) for a target designed for the focusing

region Θ.

5. As the sources are assumed to change their position gradually,

track sources by repeating steps (2) to (4) sequentially, mov-

ing the regions of interest along with the currently identified

source locations.

6. Every P snapshots, rescan the scene with a matrix Φ de-

signed for a uniform target Tuni in order to detect newly ap-

pearing targets. If new sources are found, incorporate their

location into the set Θ.

The parameter P represents a design parameter that determines how

quickly the system reacts to targets appearing outside the current

region of interest. Note that this adaptation mechanism allows for

many degrees of freedom, e.g., in terms of the rate of adaptation of

Φ or the definition of the focusing regions.

4. NUMERICAL RESULTS

In this section we present some numerical results to demonstrate the

advantage of using the focusing measurement matrix design accord-

ing to our proposed methodology. To this end, we consider a M =
12 element ULA that is reduced to m = 8 channels via an 8 × 12
compression/focusing matrix Φ. We sample the spatial space using

an N = 64 point uniform sampling grid, i.e., µ1,2 = (n0±d/2) ·∆
where n0 ∈ [1, N ] and d is the inter-source spacing in grid points.

To construct the uniform matrix ensemble Φuni we solve the

optimization problem (7) to obtain the closed form solution. As a

target we set Tuni = IN which is the ideal uniform target function

described by (5). More details about the performance of Φuni can

be found in [16]. We will only consider it here as an initial estimator

of the regions of interest towards which the main beam is focused

afterwards.

w
c

d
θ

1

T
ar

g
et
T
(θ
, θ
)

w∆ w∆

Fig. 1. Definition of the focusing window: the blue arrows indicate

the estimated DOAs with a distance of d grid points. The window is

centered at grid point c, located in the middle of the targets, and has

a width of w grid points, where w = d+ 2w∆.

The focusing measurement design Φfoc is obtained by modify-

ing the target according to (6) where Tfocus is an N ×N matrix that

contains the identity matrix in the focusing region and nulls other-

wise. The focusing region is identified based on an initial estimate

of the source locations, e.g., by a reconstruction of the scene based

on a first measurement carried out with Φuni. Figure 1 shows how
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Rand
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Focused

Fig. 2. MSE versus SNR for two sources using the random, uni-

form, and focusing design where the source separation d is varied

randomly. The focusing interval is defined according to the knowl-

edge about the region of interest obtained from the first uniform mea-

surement with a window width given by w∆ = 6.

to define the target for two closely spaced sources, in which case

we define one interval containing both as the region of interest. The

blue arrows represent the (estimated) source positions. The focusing

interval Θ is described as mentioned earlier by a center grid point

c which we place in the middle of the two sources and a width w.

Naturally, we have w = d+ 2w∆, where w∆ is the number of extra

grid points we allow to both sides of the identified sources (in Fig-

ure 1 we have w∆ = 1) and d is the distance between the sources

estimated from the uniform measurement initialization step. In gen-

eral, the width w represents a design parameter where smaller values

indicate a more narrow focus. If the initial estimate of the regions

of interest is not very reliable, w should be chosen larger to allow

for some deviations of the source position estimate in the refocused

measurements. A concrete strategy for the choice of w is discussed

below. Note that if more than two sources are present, the focus-

ing interval Θ can be found by the union of several intervals, each

centered around the middle of a cluster of identified sources.

As a first step, we compare the performances of the three mea-

surement designs of Φ: the random design advocated in the earlier

papers [14, 15], the uniform we proposed in [16] and the focusing

design proposed in this paper. The latter uses the estimate of the uni-

form design as an initialization, i.e., its first measurement is carried

out with Φuni, the scene is reconstructed, and then used to iden-

tify the regions of interest to find Φfoc for the second measurement.

For this experiment, we choose w∆ = 6, i.e., a window width of

w = d + 12 grid points as the focusing region. Figure 2 shows the

mean square error (MSE) versus the signal to noise ratio (SNR) for

a scenario with two sources that are located on the grid and d grid

points apart. The MSE is averaged over randomly drawn distances d
and noise vectors w (cf. (2)) drawn from a zero mean circularly sym-

metric complex Gaussian distribution. For each trial, the fast orthog-

onal matching pursuit (OMP) [21] is used for the DOA estimation

process and then the mean square error MSE = 1
2

∑2
k=1(µk− µ̂k)

2

is calculated for the three designs. As depicted in the figure, the ran-

dom measurement design shows the worst performance as expected

(see [16] for more details). The results show that the focusing design

provides a significant improvement in terms of the SNR.
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Fig. 3. MSE versus SNR for two sources separated by four grid

points using different focusing interval lengths. A smaller win-

dow size leads to a more narrow focus, resulting in an improved

resolution.
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Fig. 4. Same scenario as shown in Figure 3 but this time the

focusing is done sequentially with w∆ being halved at each step.
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Fig. 5. Same scenario as shown in Figure 4 but this time the

sources are only d = 2 grid intervals apart.
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Fig. 6. Same scenario as before but instead using BP for initial-

ization

To investigate the effect of the focusing interval width, we have

repeated the experiment from Figure 2 with different focusing widths

while fixing the sources’ spacing to d = 4 which corresponds to 0.75

Rayleigh distances (i.e., they are closely spaced). Figure 3 compares

the resulting MSE for a focusing width parameter w∆ = 3, 5, and

7, respectively. We observe that a more narrow focus leads to sig-

nificantly reduced MSEs and thus a superior resolution of the two

closely spaced sources compared to the unfocused, uniform design.

We now turn our attention towards a concrete example of a

possible implementation of our focusing design without any spe-

cial prior knowledge about the scene. Our idea is to perform the

focusing sequentially, starting with an unfocused, uniform design

and then gradually narrowing the focus by sequentially reducing the

window size w. Each of the sequential measurements provides an

improved estimate of the scene (as we have seen in Figure 3) which

can be used to update the center of the window c and thus make sure

that the focus is put in the correct direction. Figure 4 shows such

a process where we investigate a scenario with two sources d = 4

grid points apart and we keep decreasing the window size parameter

w∆ from N/2 to N/4 to N/8 to N/16. The curves labeled w∆,i

for i = 1, 2, 3, 4 correspond to the i-th sequential measurement

which positions the target window according to the estimate from

the (i − 1)-th measurement and sets the window size to N/2i, as

indicated in the legend of the figure. The results show that each of

the sequential measurements provides a more narrow focus which

leads to a lower MSE, although the change from N/8 to N/16 does

not improve the MSE significantly anymore.

Figure 5 depicts the result for the same scenario with the sources

only d = 2 grid points apart. Here the fourth measurement w∆,i =
N/16 shows a worse performance than the third measurement using

w∆,3 = N/8. This suggests that over-focusing might result in a

worse performance, e.g., if the focus center c is not placed exactly in

the correct direction.

So far, all the numerical results were based on the OMP algo-

rithm for the sparse recovery step. To demonstrate that our proposed

measurement matrix design can be applied to any sparse recovery
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algorithm, Figure 6 shows the same scenario as Figure 3, compar-

ing the basis pursuit (BP) [22] with the OMP algorithm. The results

show that as expected, the convex optimization based BP algorithm

outperforms OMP, however, both algorithms benefit in a similar way

from our proposed adaptive measurement matrix design.

5. CONCLUSIONS

In this paper, we have discussed a focusing design of the compres-

sion matrix for applying Compressive Sensing (CS) to the Direction

of Arrival (DOA) problem. The main idea is to apply measurements

in a sequential fashion: first, we measure with a uniform design that

is equally sensitive in all directions and thus allows us to obtain a

good estimate for the region(s) of interest in the angular domain.

Then, the measurements are iteratively focused towards these re-

gions. We have demonstrated that the focusing design results in a

significant performance improvement compared to the uniform de-

sign. In particular, our numerical results demonstrated that a more

narrow focus, leads to an improved SNR and resolution. We have

demonstrated that the width of the focusing region is a parameter

that can be used to control the degree of focus depending on the

reliability of the estimate of the regions of interest and provided a

sequential focusing strategy as a concrete example.
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