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ABSTRACT
In this paper we investigate the conditions that complex ker-
nels must satisfy for proper complex-valued signals. We study
the structure that complex kernels for proper complex-valued
signals must have. Also, we demonstrate that complex kernels
that have been previously proposed and used in adaptive fil-
tering of complex-valued signals assume that those signals are
proper, i.e, they are not correlated with their complex conju-
gate. We provide an example of how a complex-valued kernel
suitable for a particular model is designed, with a procedure
that could help in other designs. The experiments included
show the good behavior of the proposed kernel in the task of
nonlinear channel equalization.

Index Terms— Gaussian processes, regression, proper
complex processes, kernel methods.

1. INTRODUCTION

Complex-valued signals model a vast range of nowadays sys-
tems in science and engineering. The nonlinear processing of
complex-valued signals has been recently addressed using re-
producing kernel Hilbert spaces (RKHS) [5]. Some complex
kernels have been lately proposed for classification [6], kernel
principal component analysis and regression [1–4]. Regard-
ing regression, in [2] the authors propose a complex-valued
kernel based on the results in [6]. The same kernel is adopted
in [1], and its convergence behavior is studied in [7]. As
discussed later in this paper, the resulting approach involves
properness of the complex-valued signals, i.e., they are un-
correlated with their complex conjugate. Besides, the kernel
used is neither stationary nor isotropic, and it may suffer from
numerical problems. In [4] the authors review the kernel de-
sign to improve the previous solution with a kernel they de-
note as independent. The resulting kernel yields also proper
complex-valued outputs. The kernel is stationary, but again
it is not isotropic in the complex-valued input space, as the
real and imaginary parts of the input are split and fed to dif-
ferent real valued kernels. Hence, these previous works do
not report results for isotropic and stationary kernels that may
better model the underlying physics of some systems. Also,
the structure of the kernel remains more rigid than needed.
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These drawbacks make these solutions not powerful enough
to learn a wide range of systems.

We study in this paper the conditions that complex pos-
itive definite kernels must satisfy for proper complex-valued
signals, to improve previous solutions. The starting point is
the complex nonlinear regression problem y = f(x) + ε,
where the output, y ∈ C, the input vector, x ∈ Cd, and
the unknown nonlinear latent function, f ∈ C, are com-
plex valued, and the error, ε is modeled as additive zero-
mean complex Gaussian noise. We analyze the structure
of the covariance matrix of the complex-valued vector y =

[y(x(1)), ..., y(x(n))]
> when it is proper. The covariance

function or kernel must produce the entries of that covari-
ance matrix. We will show that the real part of the kernel is
given by the covariance of the real part plus the covariance
of the imaginary part of the outputs, while the imaginary
part of the kernel describes the cross-covariance between
real and imaginary parts of the outputs. We prove that the
real and imaginary parts of the kernel can be designed with
different features. But we conclude that the imaginary part,
in addition to be skew-symmetric, must be constructed to
ensure the whole covariance to be semi-definite positive,
i.e. a reproducing kernel or covariance matrix [8]. We also
pay attention to the modeling of physical systems. As an
example, we propose the construction of a complex kernel
that explains a positive and negative correlation of the real
part of the output with the imaginary part for a positive and
negative delay, canceling at the origin. Also, in order to
measure similarity between inputs our example makes use of
the absolute value of the complex difference between inputs.
Therefore, the kernel is isotropic and stationary. We resort to
the convolution approach [9, 10] to ensure that the produced
kernel is a valid covariance function. The procedure followed
could help in other complex-valued kernel designs for proper
complex-valued outputs.

2. COMPLEX COVARIANCE FUNCTIONS

Consider a zero-mean complex vector y = yr + jyj ∈ Cn,
with yr its real part and yj its imaginary part. The covariance
matrix K = E

[
yyH

]
is [11]:

K = Krr +Kjj + j (Kjr −Krj) , (1)
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where Krr and Kjj ∈ Rn×n
+ are the covariance matrices

of real and imaginary parts of y, respectively, and Krj =

E
[
yry

>
j

]
= K>

jr ∈ Rn×n is the cross-covariance matrix
of real and imaginary parts. From (1) it is clear that a ker-
nel or covariance function, k(x,x′), which gives rise to K
can be composed by three real-valued covariance functions,
krr(x,x

′), kjj(x,x
′) and krj(x,x

′), that give rise to the three
real covariance matrices Krr, Kjj and Krj, respectively:

k(x,x′) = krr(x,x
′) + kjj(x,x

′)

+ j (krj(x
′,x)− krj(x,x

′)) . (2)

For the particular case of a proper complex Gaussian vec-
tor, the pseudo-covariance matrix is zero, E

[
yy>] = 0, and

the following relations hold: Krr = Kjj and Kjr = K>
rj =

−Krj [11]. Therefore, in such a case functions krr(x,x
′) =

kjj(x,x
′), and krj(x,x

′) must yield either a null or a skew-
symmetric cross-covariance matrix Krj. The covariance ma-
trix (1) for a proper vector yields

K = Kr + jKj, (3)

where Kr = 2Krr and Kj = −2Krj. Following the guidelines
in [12] we may conclude that a proposed kernel is a valid
reproducing kernel if (3) is a covariance matrix. Hence, it
must be a Hermitian positive semi-definite matrix [8]. Also,
Krr must be a symmetric and positive semi-definite matrix,
since the marginals of the joint probability functions of the
real and imaginary parts must be also covariance matrices. It
follows that the condition vHKv ≥ 0 for any v ∈ Cn yields,

vHKv = v>
r Krvr + v>

j Krvj − 2v>
r Kjvj ≥ 0 (4)

where the first terms to the right of the equality are greater or
equal to zero, since Kr is positive semi-definite and we used
v>

r Kjvr =v>
j Kjvj = 0 since Kj is skew-symmetric.

3. PREVIOUSLY PROPOSED COMPLEX KERNELS

In [2, 6] a complex-valued Gaussian kernel is proposed as an
extension of the real Gaussian kernel:

kC(x,x
′) = exp

(
−(x− x′∗)

>
(x− x′∗)/γ

)
. (5)

Further operations allow us to show that this kernel gives rise
to a covariance matrix for the proper case as in (3):

kC(x,x
′) = exp

(
−(|xr − x′

r|2 − |xj + x′
j |2)/γ

)
· exp

(
−2j(xr − x′

r)
>(xj + x′

j)/γ
)

= exp
(
−(|xr − x′

r|2/γ
)
exp

(
|xj + x′

j |2/γ
)

·
(
cos(2(xr − x′

r)
>(xj + x′

j)/γ)

−j sin(2(xr − x′
r)
>(xj + x′

j)/γ)
)
, (6)

where x = xr + jxj, x′ = x′
r + jx′

j , and | · | is the `2-norm.
Notice that the kernel in (6) corresponds to assuming the out-
put is proper with non-null skew-symmetric cross-covariance
matrix. This kernel measures similarities between real parts
while measures dissimilarity between imaginary ones and it is
not stationary. It also has an oscillatory behavior. In addition,
the exponent in the kernel may easily grow large and positive.
These characteristics may not be very useful when modeling
the underlying physics of many systems.

In [4], the authors propose the so-called independent ker-
nel to improve the previous one:

kind(x,x
′) = κR (xr,x

′
r) + κR

(
xj,x

′
j

)
+ j
(
κR
(
xr,x

′
j

)
− κR (xj,x

′
r)
)
, (7)

where κR is a real kernel of real inputs. Again, this kernel fol-
lows the structure for the proper case. The kernel in (7) solves
the measure of similarity between inputs by checking for the
real and imaginary parts independently. At this point, we lose
the intuition about the complex nature of inputs. The ker-
nel assumes again that the output process to model is proper
complex valued, where the imaginary part is non-null and
skew-symmetric. One of the main drawbacks of this kernel
is that it is not isotropic, due to the way real and imaginary
parts of the inputs have been split in the kernel. For exam-
ple, if a real Gaussian kernel is used in (7) as proposed in [4],
κR = α exp(−|x− x′|2/β) for some hyperparameters α and
β, whenever two inputs are distant enough tthe kernel van-
ishes except for several cases, for example similar imaginary
parts. For any xj = x′

j , the covariance yields the maximum
value for κR, kind(x,x′) = α. In the imaginary part of the
kernel we have a similar behavior.

4. A COMPLEX-VALUED KERNEL FOR PROPER
COMPLEX-VALUED SIGNALS

If a dependence exists between the real and the imaginary
parts of the output, it should be included in the kernel design.
However, in many problems it is not easy to know the char-
acteristics of such dependence. For that reason the complex
Gaussian kernel in (5) or the independent kernel in (7) might
not be the best choice for some models. The proposed ker-
nel structure in (2) much better adapts to the problem at hand.
The real part of the kernel can be designed with a structure
different from the structure of the imaginary part, adapting the
design to the problem to model. Also, if the cross-covariance
is known to be null or negligible the imaginary part of the
kernel can be set to zero.

In the following we provide an example of how a complex-
valued kernel suitable for a particular model is produced.
Here we propose just one kernel, but the procedure followed
could help in other designs. The design should meet condi-
tion (4), that encodes intuitive facts such as the maximum
absolute value of the cross-covariance being lower or equal to
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the maximum absolute value of the covariance. On the other
hand, the kernel must be able to explain the dependencies
between real and imaginary parts of the output, if known,
while Krj is restricted to be skew-symmetric.

We propose to model a system where the real and imag-
inary parts of the outputs are correlated for delayed points
with delay µ ∈ Cd. Since the covariance matrix must be
skew symmetric, the correlation will be positive (or nega-
tive) for a delay of µ and negative (or positive) for a delay
of −µ. We must ensure that the kernel corresponds to a co-
variance matrix. To this end we bring here the convolution
approach [9, 10]. We model the output of the process as the
filtering of two independent white Gaussian noises and com-
pute the kernels from the filter responses. This way we meet
the condition of being a covariance matrix. The filters are de-
signed to model the proposed system, fulfilling the condition
of a skew symmetric imaginary part of the kernel. Also, we
propose to use the inner product of the inputs, xHx, a simple
metric in complex numbers, to cope with isotropy.

The convolution process is sketched in Fig. 1. Consider
two independent, real, stationary, Gaussian white noise pro-
cesses Sr(x) and Sj(x), where x ∈ Cd, producing an output
Y (x) = U(x)+W (x), where W (x) is a stationary Gaussian
white noise, and U(x) is defined by the sum of convolutions

U(x) = (hr(x) + jhrj(x)) ? Sr(x)

+ (hr(x) + jhjr(x)) ? Sj(x) =
4∑

m=1

hm(x) ? Sm(x),

(8)

where we have used the following notation: h1(x) = hr(x),
h2(x) = jhrj(x), h3(x) = hr(x), h4(x) = jhjr(x), S1(x) =
S2(x) = Sr(x), and S3(x) = S4(x) = Sj(x). The co-
variance of Y (x) is derived as C(xa,xb) = CU (xa,xb) +
σ2
W δab, where σ2

W is the variance of W (x), and

CU (xa,xb) = E [U(xa)U
∗(xb)]

= E

[
4∑

m=1

∫
Cd

hm(α)Sm(xa −α)ddα

·
4∑

n=1

∫
Cd

h∗
n(β)Sn(xb − β)ddβ

]

=

4∑
m=1

4∑
n=1

{∫
Cd

∫
Cd

hm(α)h∗
n(β)

· E [Sm(xa −α)Sn(xb − β)] ddαddβ

}
. (9)

Since S1(x) = S2(x) = Sr(x), and S3(x) = S4(x) = Sj(x),
processes Sm(xa−α) and Sn(xb−β) covary only if m,n ∈
{1, 2} or m,n ∈ {3, 4}, and (xa − α) = (xb − β). In such
cases, E [Sm(xa −α)Sn(xb − β)] = δ(α− (xa−xb+β)),

Sr Sj

UW

Y

?
hr + jhrj ?

hj + jhjr

Fig. 1. Convolution system model to design a kernel for proper
complex-valued signals.

and the integrals in (9) yield∫
Cd

∫
Cd

hm(α)h∗
n(β)δ(α− (xa − xb + β))ddαddβ

=

∫
Cd

hm(β + dx)h
∗
n(β)d

dβ, (10)

where dx = xa − xb. Hence,

CU (xa,xb) =

2∑
m=1

2∑
n=1

∫
Cd

hm(β + dx)h
∗
n(β)d

dβ

+

4∑
m=3

4∑
n=3

∫
Cd

hm(β + dx)h
∗
n(β)d

dβ. (11)

If we set the filter responses to parameterized exponentials as
hi(x) = (j)civi exp(−(x−µi)

H(x−µi)/γ), the integrals in
(11) are as follows∫

Cd

hm(β + dx)h
∗
n(β)dβ

d

=(j)cm(−j)cnvmvn

∫
Cd

exp

(
− (β − µn)

H(β − µn)

γ

)
· exp

(
− (β + dx − µm)H(β + dx − µm)

γ

)
dβd

=(j)cm(−j)cnvmvn

(∫
Cd

exp

(
− (β − β̂)H(β − β̂)

0.5γ

)
dβd

)

· exp
(
− (dx − µm + µn)

H(dx − µm + µn)

2γ

)
=(j)cm(−j)cn

(πγ
2

)d
vmvn

· exp
(
− (dx − µm + µn)

H(dx − µm + µn)

2γ

)
, (12)

where β̂ = 0.5(µn − (dx − µm)).
We propose the following parameter values. For h1(x) =

h3(x) = hr(x), we set v1 = v3 = vr, µ1 = µ3 = 0 and
c1 = c3 = 0. For h2(x) = jhrj(x), we set µ2 = µ, v2 = vrj
and c2 = 1. And for h4(x) = jhjr(x), we set µ4 = −µ,
v4 = −vrj and c4 = 1. By making use of these values and

23rd European Signal Processing Conference (EUSIPCO)

2418



(12), (11) yields

CU (xa,xb) = CU (dx)

=
(πγ

2

)d
v2r exp

(
−dH

xdx

2γ

)
− j
(πγ

2

)d
vrvrj exp

(
− (dx + µ)H(dx + µ)

2γ

)
+ j
(πγ

2

)d
vrvrj exp

(
− (dx − µ)H(dx − µ)

2γ

)
+
(πγ

2

)d
v2rj exp

(
−dH

xdx

2γ

)
+
(πγ

2

)d
v2r exp

(
−dH

xdx

2γ

)
+ j
(πγ

2

)d
vrvrj exp

(
− (dx − µ)H(dx − µ)

2γ

)
− j
(πγ

2

)d
vrvrj exp

(
− (dx + µ)H(dx + µ)

2γ

)
+
(πγ

2

)d
v2rj exp

(
−dH

xdx

2γ

)
=
(πγ

2

)d
(2v2r + 2v2rj) exp

(
−dH

xdx

2γ

)
+ j
(πγ

2

)d
2vrvrj

(
exp

(
− (dx − µ)H(dx − µ)

2γ

)
− exp

(
− (dx + µ)H(dx + µ)

2γ

))
. (13)

Hence, from this covariance, up to a multiplying constant
the kernel in (2) can be set as,

k(x,x′) = (v2r + v2rj) exp

(
−dH

xdx

2γ

)
+ jvrvrj

(
exp

(
− (dx − µ)H(dx − µ)

2γ

)
− exp

(
− (dx + µ)H(dx + µ)

2γ

))
. (14)

where dx = x′ − x. Note that the constants vrj ∈ R, vr ∈ R
and µ ∈ Cd could be set according to the problem at hand or
learned as hyperparameters.

If the cross-covariance cancels or is negligible, then in
(14) we must set vrj = 0.

5. EXPERIMENTS

We bring here the nonlinear channel equalization task in [2].
The channels consisted of a linear filter t(n) = (−0.9 +
0.8j) · s(n) + (0.6 − 0.7j) · s(n − 1) and a strong memo-
ryless nonlinearity, q(n) = t(n) + (0.2 + 0.25j) · t2(n) +
(0.12+ 0.09j) · t3(n). The input signals had the form s(n) =

0.70(
√
1− ρ2X(n)+jρY (n)), as in [2], and X(n) and Y (n)

were Gaussian random variables. Note that the real and the
imaginary parts of the input signals were generated indepen-
dently and, therefore, had null cross-covariances. Also note
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Fig. 2. Learning curves for NCKLMS2, NCKLMS2-i,
NCKLMS2-(14), and the proper complex GPR (CGPR) for
the circular input case.
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Fig. 3. Learning curves for NCKLMS2, NCKLMS2-i,
NCKLMS2-(14), and the proper complex GPR (CGPR) for
the noncircular input case (ρ = 0.1).

that the input signals are circular for ρ = 1/
√
2 and highly

noncircular if ρ approaches 0 or 1. As in [2] at the receiver
end of the channel, the signal q(n) was corrupted by addi-
tive white circular Gaussian noise with the SNR set to 16 dB,
the filter length was L = 5 and the equalization time delay
D = 2. In all cases the results were averaged over 100 tri-
als where the input signals s(n) and noise output were gen-
erated randomly. Figs. 2 and 3 show the learning curves
of the NCKLMS2 algorithm in [2]. This algorithm uses the
complex Gaussian kernel in (5) and the code to run the ex-
periment is available in [13]. The tunable parameters were
set to the values in [2]: γ = 52, the step update parameter
to 1/4, and the novelty criterion was used for the sparsifica-
tion with δ1 = 0.15 and δ2 = 0.2. We observed stability
problems in the learning process of the NCKLMS2, due to
the kernel used. This problem was alleviated by using spar-
sification. We also used the independent kernel (7) in the
NCKLMS2 approach, with κR being the real Gaussian kernel,
as proposed in [4]. We labeled this algorithm as NCKLMS2-i.
The tunable parameter were set to the same values as for the
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NCKLMS2, except the step update parameter that was set to
1/8. We proposed to improve the NCKLMS2 by using the
kernel derived in this paper in (14) with vrj = 0. This al-
gorithm is labeled as NCKLMS2-(14) in Figs. 2 and 3. We
set all the parameters for this algorithm to the same values as
for the NCKLMS2. Notice that the parameters were not op-
timized so results for the proposed NCKLMS2-(14) may be
suboptimal. However, while the NCKLMS2-i algorithm ex-
hibits improved performance compared to the NCKLMS2 al-
gorithm, the NCKLMS2-(14) algorithm outperforms both. In
this equalization problem the cross-covariance between real
and imaginary parts of the signals to-be-learned, s(n), is null.
Therefore, we have set the imaginary part of the kernel to zero
with much better results. Also, the measure of similarity of
inputs through the simple norm of the complex difference be-
tween inputs endows the kernel with useful properties such as
isotropy and stationarity, better fitting the underlying model.

Finally, in order to illustrate the good performance of the
proposed kernel when used in other kernel-based complex-
valued regression algorithm, why tried it with the complex
Gaussian processes for regression for proper complex signals
(CGPR) algorithm proposed in [14]. The first 250 samples
were used as training set to estimate the kernel hyperparam-
eters (γ and noise variance) by means of the maximization
of the log marginal likelihood. Then, for each new input the
CGPR predicted the corresponding s(n) using all the previ-
ous input-output pairs as training set. The results for this al-
gorithm considerably outperform the NCKLMS2 algorithm
because of the good GPR capabilities together with the suit-
able kernel selection and hyperparameters estimation.

6. CONCLUSION

In the proper case, the imaginary part of the complex-valued
kernel must satisfy skewness. This particular condition makes
the kernel design a difficult task. We found that kernels pro-
posed in the literature were designed simply as a complex-
valued kernel satisfying skewness. But without further insight
on the meaning of the imaginary part. In this paper we review
this topic with a twofold conclusion. On the one hand, the
imaginary part is to be used if we have a control of its role, as
a tool to model a known particular feature of the system. Oth-
erwise, it is better to resort to a real-value kernel. We propose
a simple but powerful Gaussian kernel with distance between
complex inputs as argument. On the other, we show how to
include known features in the imaginary part of the kernel, by
means of the convolution approach.
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