






Fig. 2: Bar Chart Plot Comparisons Between SIA against

Gaussian Mixture Components for GMM-UBM and I-vector

Approaches in Terms of Clean Speech Using the TIMIT

Database.

Fig. 3: Curve Plot Comparison GMM-UBM and I-vector

Approaches for AWGN and NSN without handset at mixture

size 256 Using the TIMIT Database.

less reduction in SIA in the presence of noise, of all other

non-stationary noise types. On the other hand, both street and

crowd talking NSN were accurate between AWGN and the bus

NSN. The relationship between the SIA for both GMM-UBM

and I-vector approaches is explained in Fig. 3 and Fig. 4 with

different noise conditions with/without the handset.

IV. RELATED WORK

This section summarises the current work on I-vector and

GMM-UBM approaches and other related work, alongside our

Fig. 4: Curve Plot Comparison GMM-UBM and I-vector

Approaches for AWGN and NSN with G.712 Type Handset

at 16 kHz at mixture size 256 Using the TIMIT Database.

previous work and other state of the art methods [14], [22],

[12], [13], [23], [24], and [5]. According to Table IV, the

handset used was G.712 type at 16 kHz, and all proposed noise

measurements in this table were at SNR 30 dB and mixture

size 256. The best results of SIA were for clean speech, and

our evaluations included various SNR levels, as explained

in Fig. 3 and Fig. 4. Better SIA based on the I-vector was

achieved compared with GMM-UBM under clean speech for

both TIMIT and NIST 2008 databases. It also outperformed all

clean speech measurements for other researchers. For TIMIT,

the proposed I-vector approach achieved higher SIA under

AWGN compared with the previous study on the GMM-

UBM system, are compared with other work; in contrast,

our previous work with GMM-UBM had better SIA than the

proposed I-vector for AWGN WH, in line with other work.

In addition, for non stationary background noise WH, the

performance accuracy of GMM-UBM was better than the I-

vector at SNR 30dB, but this reversed for some SNR levels.

Finally, in [5], it seems the SIA for street noise was higher than

in the proposed work, but this was achieved using a different

noise database with 630 speakers.

V. CONCLUSIONS

This paper considered robust text independent speaker

identification using I-vector approach for various background

noises WH effects. The proposed work is compared fairly

with the GMM-UBM approach and evaluated on the TIMIT

and NIST 2008 databases for clean speech and also for

TIMIT databases under nine different conditions, using both

databases, eleven I-vectors together with feature and fusion-

based methods. The system for both databases outperformed

GMM-UBM techniques for clean speech, and also outper-

formed in TIMIT database under AWGN WOH, then it seems

better for some SNR levels with street and crowd talking.
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TABLE IV: Recent works Related to I-vector and GMM-UBM

Techniques Speaker Identification

Approaches The best feature

/ fusion based
Condition The best SIA

(1) Proposed work using NIST 2008 with 120 Speakers (1,200 utterances)
Proposed fusion based I-vector Interleaving-2d Clean 96.67%
Proposed fusion based GMM-UBM Weighted sum Clean 95.83%
(2) Proposed work. using TIMIT database with 120 Speakers (1,200 utterances)

Proposed fusion based 

I-vector

Weighted sum Clean 96.67%
Concatenated-2d

Interleaving-2d
AWGN 80.83% (30dB)

FWMFCC-feature AWGN-WH 72.5% (30dB)
Weighted sum Street traffic NSN 90% (30dB)
Weighted sum Street traffic NSN-WH 82% (30dB)
Interleaving-2d Bus interior NSN 93.33%(30dB)
Weighted sum Bus interior NSN-WH 89.17%(30dB)

Concatenated-2d Crowd talking NSN 90.83% (30dB)
FWMFCC-feature Crowd talking NSNWH 85% (30dB)

Proposed fusion based

GMM-UBM

Weighted sum Street traffic NSN 90.83% (30dB)
Mean fusion Street traffic NSN-WH 90% (30dB)
Mean fusion Bus interior NSN 94.17% (30dB)

Weighted sum Bus interior NSN -WH 91.67% (30dB)
Weighted sum Crowd talking NSN 91.67% (30dB)
Weighted sum Crowd talking NSNWH 90% (30dB)

Fusion based GMM-UBM
Weighted sum Clean 95%

Maximum fusion AWGN 79.17% (30dB)
FWMFCC-feature AWGN-WH 75.83% (30dB)

(4) The State of The Art in [22] [2014] using NIST 2008 with 400 speakers

I-vector Approach Without fusion Clean 49.5%
White noise at 15 dB 39.3% (15dB)

GMM-UBM Approach Without fusion Clean 39.7%
White noise at 15 dB 24.6% (15dB)

GMM-UBM-ZT norm Without fusion Clean 42.5%
White noise at 15 dB 29.7% (15dB)

(5) In [12] [2014] using Corpus designed and MIT mobile phone with 50 speakers
I-vector + LDA + WCCN Without fusion Clean 94.14% at (CDS)

I-vector (400 dim) + LDA + WCCN 92.36% at (SVM)
(6) The state of the art in [13] [2014] using YouTube with 1,000 speakers

I-vector retrieval Without fusion Clean 92% testing (10s)

96.1% testing (20s) 

(7) The state of the art in [23] [2012] using TIMIT with 120 speakers
Fusion Based GMM Weighted sum Clean 93.88%

(8) The state of the art in [24] [2011] using TIMIT database with 64 speakers

GMM-UBM without fusion Without fusion
Clean 94.5%

AWGN -WH 74.2% (30dB)
(9) The state of the art in [5] [2007] using TIMIT database with 630 speakers

New model with GMM at Mix
128

Without fusion Clean 96.51%
Street NSN (20dB) 92.86%

(3) Our previous study Using TIMIT with 120 Speakers [14][2016]

In contrast, for bus interior NSN, the GMM-UBM achieved

less reduction in SIA compared with the I-vector approach.

Additionally, fusion techniques may mitigate the reduction

caused by different noise environments and the handset effect,

whereas fusion weights generally seem to be the best of all

feature and fusion methods used. In future work, we will also

consider a new databases such as The Speakers in the Wild

(SITW) Speaker Recognition Challenge database. We will also

extend our evaluation of the NIST 2008 to include stationary

and various NSN types with handset.
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