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Abstract—In the past, many efforts have been directed to
develop biometric template protection schemes to guard bio-
metric reference data, i.e. templates. One fundamental premise
in the design of such schemes is that the average entropy of
the templates should be maximised in order to improve the
level of protection. In parallel, several works have addressed the
difficult problem of measuring the average entropy of biometric
characteristics. However, the impact of the correlation present in
different regions of a single biometric characteristic (e.g., left and
right part of the face) or within two instances of a single subject
(e.g., left and right palmprints) on the joint entropy of a multi-
biometric template has been overlooked os far. In this paper, we
address this issue and propose a way to measure such correlation
from an information theoretical perspective. We then apply the
proposed measure to a particular case study based on periocular
biometrics, using the MobBIO database. The results show that up
to 70% of the information comprised in both periocular regions of
a given subject is correlated. Finally, we analyse the implications
of such average mutual information loss on biometric template
protection schemes.

I. INTRODUCTION

The continuously increasing deployment of biometric recog-
nition systems in the past decades has raised some privacy con-
cerns regarding the storage and use of biometric data. Whereas
PINs or passwords may be replaced in case of leakage or
theft, the link between individuals and their biometric charac-
teristics, e.g. fingerprints or iris, is strong and permanent. As
a consequence, biometric templates need to be protected in
order to safeguard individuals’ privacy and biometric systems’
security. In particular, the activities of a given subject can be
tracked without consent if unprotected biometric templates are
stored in different databases, or presentation attacks can be
launched employing specific inversion techniques [1], [2], [3].

In order to tackle those security and privacy issues, different
biometric template protection (BTP) schemes have been pro-
posed in the recent past [4], [5]. These systems are designed
to meet two major requirements of biometric information
protection, as established in the ISO/IEC IS 24745 [6]: i)
irreversibility: knowledge of a protected template can not
be exploited to reconstruct a biometric sample which allows
a positive verification of the subject; and ii) unlinkability:
different versions of protected biometric templates can be
generated based on the same biometric data (renewability),
while protected templates should not allow cross-matching.

(a) (b) (c) (d) (e) (f)

Fig. 1. Examples of biometric symmetry: (a) right and (b) left sides of the
face [9], (c) right and (d) left palmprint [10] (e) right and (f) left periocular
regions [11].

In addition to satisfying these main properties, an ideal BTP
scheme shall not cause a decrease in biometric performance
(i.e., recognition accuracy) or verification speed with respect to
the corresponding unprotected system [4]. However, in spite
of the efforts directed to developing such systems, to date
the vast majority of the proposed approaches does not meet
the aforementioned requirements in practice, mostly result-
ing in a trade-off between privacy protection and biometric
performance. To overcome this issue, the incorporation of
multiple biometric sources to BTP schemes has recently re-
ceived significant attention [7]. Such multi-biometric template
protection schemes have been found to improve biometric
performance [7]. However, the protection of multi-biometric
templates is especially crucial, as they contain information
regarding multiple characteristics of the same subject [8].

In contrast to conventional biometric systems, where fusion
may take place at score or decision level [12], feature level
fusion has been identified as the most suitable for BTP
schemes. This is due to the fact that a separate storage
of two or more protected biometric templates would enable
parallelized attacks. On the other hand, a single protected
template including the information extracted from two or more
characteristics is expected to improve privacy protection, since
the fused template is expected to comprise more information
[8]. This is analogous to an access control system which
requires multiple low strength (few bits) keys, where each key
can be attacked individually. Such a system is less secure than
one which uses a single key with a larger number of bits.

To maximise the verification accuracy, uncorrelated charac-
teristics should be fused in a multi-biometric system. In this
regard, some biometric characteristics have been found to be
uncorrelated, e.g. the left and right iris patterns of a subject
[13]. However, as shown in Fig. 1, due to the natural symmetry,
which we refer to as biometric symmetry, some biometric
characteristics are expected to exhibit significant correlation
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within the extracted template itself (e.g., left and right half of a
subject’s face image) or across multiple templates (e.g. left and
right palmprint of a single subject [14]). Focusing on multi-
biometric template protection, compact templates revealing
high entropy are desired [4]. Hence, the use of symmetric
biometric sources might have a severe impact on information
protection due to a loss of average entropy of the fused
template with respect to the ideal fusion based on uncorrelated
characteristics. Whereas some techniques have been proposed
to exploit such symmetry to increase verification accuracy
[15], this issue is frequently ignored in existing approaches
to multi-biometric template protection.

In this paper we provide a theoretical analysis of the
aforementioned issue caused by biometric symmetry from an
information theory perspective, and focus on quantifying its
impact on the biometric information of the fused template
(Sect. II). Furthermore, we provide a case study in which
we empirically quantify the correlation caused by biometric
symmetry (Sect. III). This case study is conducted for left and
right periocular regions of single subjects, i.e., the externally
visible skin regions of the face that surround the eye sockets.
Periocular biometric recognition is of particular interest since
it represents an emerging biometric technology, which has
been recently used in diverse fields, such as surveillance or
mobile applications [16]. Based on the obtained results, we
provide a thorough discussion on potential implications of
biometric symmetry on (multi-)biometric template protection
schemes, Finally, according conclusions are drawn (Sect. IV).

II. BIOMETRIC INFORMATION AND SYMMETRY

The term biometric information is defined as “the de-
crease in uncertainty about the identity of a person due to
a set of biometric measurements” in [17]. Since for a given
biometric characteristic, different systems compare different
sets of features, the problem of determining the amount of
information contained in a specific biometric characteristic is
a complex one: the question ultimately depends on the selected
feature representation of the biometric data and the comparison
algorithm used [18]. In fact, a considerable effort has been
directed to solve this problem [17], [18], [19], [20].

It was shown in [20] that the decrease in the uncertainty
about the identity of an unknown biometric characteristic can
be formulated in terms of mutual information:

I (Y ;X) = H (X)−H (X|Y ) (1)

where H (X|Y ) is the conditional entropy, i.e., uncertainty
of X after the observation of Y . In addition, the authors
show that I (X;Y ) can be approximated by the Kullback-
Leibler divergence of the mated pm (s) and non-mated pnm (s)
score probability distributions, where {s1, . . . , sN} denotes the
mated and non-mated observed scores:

I (X;Y ) ≈ DKL (pm‖pnm) =

N∑
i=1

pm
(
si
)
log2

(
pm
(
si
)

pnm (si)

)
(2)

The problem now lies on how to model the probability
densities from a limited number of scores. To that end, a
Nearest Neighbor (NN) estimator can be used to calculate
the value of DKL (pm‖pnm) from the mated and non-mated
scores, without computing any probability models [19]. Let{
s1m, . . . , s

Nm
m

}
and

{
s1nm, . . . , s

Nnm
nm

}
be i.i.d. samples drawn

from the mated and non-mated densities pm (s) and pnm (s),
respectively (i.e., the computed mated and non-mated similar-
ity scores). Then, the NN estimator of the KL-divergence is
defined as [21]:

D̂KL (pm‖pnm) =
1

Nm

Nm∑
1=1

log
νnm (i)

ρm (i)
+ log

Nnm

Nm − 1
(3)

where ρm (i) = minj 6=i ‖sim − sjm‖ is the distance of sim to
its nearest neighbour in

{
sjm
}
j 6=i

, and νnm (i) = minj ‖sim−
sjnm‖ is the distance of sim to its nearest neighbour in

{
sjnm

}
.

In spite of the great value of these techniques, such ap-
proaches can only be used to globally quantize the average
entropy provided by (multi-)biometric feature vectors, i.e.,
local information of correlation is ignored. To provide a more
concrete estimate of the joint entropy caused by correlation
factors such as biometric symmetry, one part of a multi-
biometric template (Xl) could be used to gain some knowledge
about the other part (Xr).

Focusing on unprotected multi-biometric systems, the use
of two (or more) biometric characteristics has been found
to generally improve the overall recognition accuracy [12].
Such improvement can be expected if the joint entropy of
the used biometric characteristics is clearly larger than that of
each individual one, H (Xl, Xr) > max {H (Xl) , H (Xr)}.
However, in the presence of biometric symmetry, the joint
entropy of the used biometric characteristics is clearly smaller
than the sum of that of each individual one, H (Xl, Xr) <
H (Xl)+H (Xr). We assume that the same holds for extracted
biometric templates and, hence, the average entropy of the
multi-biometric template is expected to be lower than the
desired maximum.

Therefore, the question to answer now is: “what is the
decrease in uncertainty about one biometric characteristic (or
instance), due to a set of biometric measurements on the other
correlated characteristic (or instance)?”. In other words, can
we employ the template associated to a particular instance
(Xl) to gain some knowledge about the other instance (Xr)?
To answer that question, we should first note that the joint
entropy of Xl and Xr can be defined as

H (Xl, Xr) = H (Xl) +H (Xr)− I (Xl;Xr) (4)

Thus, we would like to minimise the mutual information
between Xl and Xr: I (Xl;Xr). In analogy to [19], [20],

I (Xl;Xr) ≈ D̂KL (pm‖plr) (5)

where plr (s) denotes the probability density of the similarity
scores between both characteristics or instances from a single
subject (left and right).
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The degree of biometric symmetry can thus be measured
in terms of D̂KL (pm‖plr), which is bounded between the
following values:

D̂KL (pm‖plr)≥H (Xl)+H (Xr)−max{H (Xl, Xr)}=0
(6)

D̂KL (pm‖plr)≤H (Xl)+H (Xr)−min{H (Xl, Xr)} =
min{H (Xl) , H (Xr)}

(7)

since I (Xl;Xr) = H (Xl)+H (Xr)−H (Xl, Xr) (see Eq. 4).
However, in order to have a comparable measure across

different characteristics or feature extraction techniques, we
need a relative value with respect to the original amount
of information of the biometric source. Therefore, in order
to evaluate the degree of correlation between the templates,
and the corresponding amount of mutual information loss, we
should analyse the relative decrease of D̂KL (pm‖plr) with
respect to D̂KL (pm‖pnm):

D̂fused
KL = 1− D̂KL (pm‖plr)

D̂KL (pm‖pnm)
≈ 1− I (Xl;Xr)

I (Y ;X)
(8)

This way, D̂fused
KL achieves a maximum value of one when

both left and right templates are uncorrelated (Eq. 6):

D̂fused
KL ≤ 1− 0

I (X;Y )
= 1 (9)

Conversely, D̂fused
KL yields a minimum value of zero when

the average joint entropy is minimised (i.e., Xr and Xl are
fully correlated):

D̂fused
KL ≥ 1− min{H (Xl) , H (Xr)}

I (X;Y )

≥ 1− H (X)

I (Y ;X)
≥ 1− H (X)

H (X)
= 0

(10)

where the first inequality is derived from Eq. 7, the second
from min{H (Xl) , H (Xr)} ≤ H (X) (i.e., the average en-
tropy of one half of the characteristic Xl is at most as high
as that of the complete characteristic X), and the third from
I (Y ;X) = H (X)−H (X|Y ) ≤ H (X).

In summary, D̂fused
KL gives an estimation of how uncorrelated

Xl and Xr are. Or in other words, the higher D̂fused
KL , the higher

the average joint entropy of the fused template.

III. CASE STUDY: PERIOCULAR BIOMETRICS

A particular case study, based on periocular regions, is
analysed in this section. The experiments are conducted on
the training set of the MobBIO iris corpus [11], acquired at
visible wavelength, which can be used to benchmark perioc-
ular recognition systems [16]. The database comprises color
images of 300×200 pixels of 200 periocular instances (100
subjects). For each region, four images are available, resulting
in a total number of unconstrained 800 images.

At preprocessing, each image is converted to grayscale and
Contrast Limited Adaptive Histogram Equalization (CLAHE)
is applied to obtain an enhanced image, as shown in Fig. 2 (a).

(a) Enhanced (b) LBP (c) BSIF (d) SIFT

Fig. 2. An (a) enhanced image and (b-d) features extracted from (a).

Subsequently, two types of features are extracted, namely: i)
generic texture descriptors and ii) keypoint-based features.

With respect to generic texture descriptors, Uniform Local
Binary Patterns (LBP) [22] and Binarized Statistical Image
Features (BSIF) [23] are extracted from the enhanced images.
Images are then divided into 25×25 sub-blocks to retain
local information and one feature histogram, comprising the
obtained feature values, which are computed per texture block.
While LBP simply processes neighbouring values of 9×9
pixel multi-scale blocks, BSIF utilizes 15×15 pixel filters
with a filter length of 8 bits learned from a set of images.
The extracted templates from a given image are depicted
in Fig. 2 (b) and 2 (c), respectively. In order to obtain a
similarity score from the templates, pairs of corresponding
histograms are compared using the χ2-distance. The final
score is estimated as the normalized average distance of all
histogram comparisons. For more details on these texture
descriptors the reader is referred to [22], [23].

On the other hand, regarding keypoint-based features, Scale
Invariant Feature Transform (SIFT) [24] and Speeded Up
Robust Features (SURF) [25] extract sets of local keypoints
and the corresponding keypoint descriptors. As a consequence,
the extracted feature vectors are of variable size. The afore-
mentioned generic algorithms can be applied to various types
of input images. In this case, both methods are applied to
enhanced images, and an efficient trimming of false positive
keypoint correspondences using geometrical constraints is
carried out. The keypoints detected in Fig. 2 (a), based on
which SIFT and SURF descriptors are extracted, are shown
in Fig. 2 (d). In order to compare the feature vectors, given
two sets of keypoint descriptors, the resulting correspondences
are obtained from the according comparator using a cross-
checking procedure. False positive matches are detected and
erased by comparing the distance of x and y coordinates of
corresponding keypoints to adequate thresholds. In particular,
matched keypoints have to lie within 16×16 pixel regions. The
final comparison score is estimated as the number of retained
matches normalized by the minimum number of keypoints
detected in both images. For details on keypoint detection,
the extraction of keypoint descriptors and keypoint matching,
the reader is referred to [24], [25].

To obtain the baseline accuracy, the mated score distri-
bution pm (s) is estimated by performing all genuine (i.e.,
mated) comparisons. For uncorrelated impostor (i.e., non-
mated) scores, pnm (s), the first image of each subject is
used. In addition, to quantify the correlation, all possible
comparisons between left and right periocular regions of single
subjects are performed, plr (s), where the right periocular
regions are horizontally mirrored prior to feature extraction.
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Fig. 3. DET curves for all features considered, where the FNMR is computed
from mated (solid curves) or left vs right comparisons (dashed curves).

The Detection Error Trade-off (DET) curves for each feature
extraction method are depicted in Fig. 3. The solid curves
represent the normal accuracy evaluation, and the dashed
curves represent the correlation study - i.e., left vs right
comparisons are computed for the False Non-Match Rate
(FNMR) estimation. As it can be observed, the Equal Error
Rate (EER) increases approximately from 18% to 30% in all
cases, indicating that the features extracted from periocular
regions are not exactly symmetric, and therefore can not be
indistinguishably used for recognition purposes. On the other
hand, if there were no correlation or symmetry between them,
the EER would be that of random comparisons: 50%. How-
ever, values around 30% are achieved, confirming that there
is a significant correlation between both periocular regions of
the subject, regardless of the features considered.

Let us now quantify the degree of correlation, following the
methodolofy proposed in Sect. II. The score distributions for
all feature extractors considered are shown in Fig. 4, where
pm (s) is depicted in dashed green, pnm (s) in dashed red and
plr (s) in solid blue. Table I shows the corresponding values
of D̂KL (pm‖pnm), D̂KL (pm‖plr) and D̂fused

KL .
As it can be observed in Fig. 4, regardless of the feature

extractor considered, the left-right distribution is closer to
the mated distribution than the non-mated one. This shows
that such comparisons give away more information about the
biometric sample than random non-mated comparisons with
instances belonging to other individuals, thereby resulting in
a decrease in the average joint entropy of the fused template
with respect to the fusion of fully uncorrelated characteris-
tics. This fact is reflected on the decrease of D̂KL (pm‖plr)
with respect to D̂KL (pm‖pnm), as shown in Table I: in all
cases, D̂fused

KL < 1, indicating that both periocular regions are
somehow correlated. More specifically, only 44% of the ideal
maximal joint entropy is retained for the SIFT based templates
(D̂fused

KL = 0.44), whereas the BSIF features show the lowest
correlation (i.e., D̂fused

KL = 0.70). Hence, the amount of joint
entropy also depends on the employed feature extractor.

IV. DISCUSSION AND CONCLUSIONS

As shown in Sect. III, biometric symmetry results in a
considerable degree of correlation between the corresponding
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Fig. 4. Mated pm (s) (dashed green), non-mated pnm (s) (dashed red) and
lef-right plr (s) (solid blue) score distributions for each feature extractor.

biometric templates, thereby decreasing their joint entropy
(only up to 70% of the maximal joint entropy is retained
for both periocular regions). While a decrease in average
entropy might not cause any issue from a verification accuracy
perspective, it can negatively affect the privacy protection
offered by multi-biometric template protection schemes. In
particular, regarding biometric cryptosystems, e.g. the fuzzy
commitment scheme [26], secret keys are bound to and re-
trieved from biometric templates, where biometric variance is
overcome by means of error correction. The general idea for
achieving error correction is to add some redundancy. To that
end, biometric templates are bound to non-random data of
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TABLE I
D̂KL (pm‖pnm), D̂KL (pm‖plr) AND D̂FUSED

KL FOR ALL FEATURES.

LBP BSIF SIFT SURF

D̂KL (pm‖pnm) 5.45 5.07 7.08 6.07
D̂KL (pm‖plr) 2.07 1.50 3.94 2.51

D̂fused
KL 0.62 0.70 0.44 0.59

rather low entropy. For instance, in a [2k, k + 1, 2k−1] linear
code, k bits are encoded to 2k−1 bits. It has been shown that
information leakage increases within biometric cryptosystems
if the average entropy provided by the biometric template is
reduced [27]. When an attacker is aware of the biometric
symmetry of two or more biometric templates used in a multi-
biometric cryptosystem, his guessing entropy is significantly
reduced. In particular, in case of statistical attacks, where the
symmetry between different template parts might be utilized
to filter out faulty keys.

Within cancelable multi-biometric systems feature, trans-
forms are applied in the signal of feature domain using specific
parameters, allowing a reliable comparison in the transformed
domain [28]. In any case, a decrease in the average entropy
of biometric templates results in a reduction of the feature
space, and, hence, also in the parameter space of the cancelable
multi-biometric system. Moreover, biometric symmetry will
facilitate the reconstruction of an approximation of the original
biometric templates, due to a reduced guessing entropy [29].

In summary, for both types of biometric template protection
schemes, the presence of biometric symmetry is expected to
reduce the level of privacy protection. In other words, naı̈ve
assumptions about provided security levels in multi-biometric
template protection schemes could be misleading and (even
worse) utilized by an adversary to attack the system. In order
to increase the security offered by multi-biometric template
protection systems, it is suggested to choose biometric sources
in a way that the joint entropy and, hence, the average
entropy of multiple templates (or within a single template)
are maximised. This corresponds to a minimization of mutual
information between biometric sources, I (Y ;X), which could
be easily achieved by choosing totally uncorrelated modalities,
e.g., a combination of fingerprint and iris. However, when
designing a multi-biometric system, biometric performance as
a result of biometric fusion should always be weighed against
the associated overhead involved, such as additional sensing
cost. That is, it is preferred to combine biometric sources that
can be acquired in a single presentation [30], e.g., both irises
of the subject.
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