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Abstract—Direction of arrival algorithms which exploit the
eigenstructure of the spatial covariance matrix (such as MUSIC)
encounter difficulties in the presence of strongly correlated
sources. Since the broadband polynomial MUSIC is an extension
of the narrowband version, it is unsurprising that the same issues
arise. In this paper, we extend the spatial smoothing technique
to broadband scenarios via spatially averaging polynomial space-
time covariance matrices. This is shown to restore the rank of
the polynomial source covariance matrix. In the application of
the polynomial MUSIC algorithm, the spatially smoothed space-
time covariance matrix greatly enhances the direction of arrival
estimate in the presence of strongly correlated sources. Simulation
results are described shows the performance improvement gained
using the new approach compared to the conventional non-
smoothed method.

I. INTRODUCTION

Super-resolution direction of arrival (DoA) algorithms
(such as MUSIC [1]) encounter serious difficulties in the pres-
ence of strongly correlated sources [2]. For example, sources
in multipath environments exhibit a high degree of correlation
[3]. Spatial smoothing is a simple, yet powerful narrowband
technique commonly used to overcome the detrimental effects
of these strongly correlated sources.

Recent advances in polynomial eigenvalue decomposition
(PEVD) algorithms [4] [5] promoted the generalisation of
some narrowband algorithms to fit broadband scenarios [6].
The polynomial MUSIC algorithm (PMUSIC) [7], is one
example, aiming to extend the MUSIC algorithm proposed by
Schmit [1] to the broadband scenario. Similar to its narrowband
version, PMUSIC performance decreases in the presence of
highly correlated sources [8].

Spatial smoothing was initially proposed by Evans et al.
[9], and further developed by Shan et al. [2], and is often
referred to as ’forward-only’ spatial smoothing. While effective
at finding the DoA of coherent narrowband sources, this
technique is severely detrimental to the effective array aperture.
For P coherent sources illuminating the array, 2P antenna
elements are required to find their direction of arrival [2].

This spatial averaging technique was further improved by
Pillai and Kwon [10] through averaging in both forwards,
and backwards directions. This is known as forward/backward
spatial smoothing, whereby the backwards array is defined as
the spatially reversed conjugate of the forward. Rather than
in terms of DoA estimation performance, the benefits of this
approach are in terms of required antenna aperture, with only

3P/2 minimum sensors required. This is further improved by
Williams el al. [11] whereby the cross correlation between
sub-array elements is taken into account.

In this paper, the forward-only spatial smoothing scheme
is extended to fit broadband scenarios by spatially averaging
polynomial space-time covariance matrices. It is sufficient to
consider the forward-only spatial smoothing technique - as the
proof for the forward/backward version could be found via
following the logic of this paper, in conjunction with [10].

The remainder of this paper is organised as follows: Section
II formulates the problem and introduces the signal model used
in the paper. The space-time covariance matrix is introduced
in Section III. The components of the polynomial matrix
are analysed for both the uncorrelated, and coherent source
case. Section IV introduces forward-only spatial smoothing
technique, and the SSP-MUSIC algorithm is devised in Sec-
tion V. Simulation results and comparisons between spatially
smoothed, and non spatially smoothed SSP-MUSIC algorithms
are provided in VI before concluding the paper.

Notation. To keep with standard notation, vectors and ma-
trices are represented by lower and upper-case bold variables
e.g. a and A, polynomial vectors and matrices are written
as a(z) and A(z). The Hermitian transpose of a matrix
A is denoted as AH , and the parahermitian transpose of a
polynomial matrix defined as Ã(z) = AH(z−1). Convolutions
are denoted by the ⊗ operator. The bilateral z-transform

a(z) =
∞∑

n=−∞
a(n)z−n is abbreviated as a(n) ◦ − • a(z).

II. DATA MODEL

For simplicity, all sources are assumed to be far-field,
and the medium is assumed to be non-dispersive with no
attenuation between antenna elements. The P sources illumi-
nating the array can be modelled as a superposition of the
steered sources, plus additive noise, which is assumed to be
spatially and spectrally white, uncorrelated and Gaussian. In
a narrowband scenario, some assumptions can be made. If
a signal is narrowband, then its complex envelope will be
approximately constant across the array - thus the elements of
the steering vector can be modelled as complex exponentials,
shifting the phase of the narrowband carrier.

In a broadband scenario, a linear phase shift across all
frequencies is required, which can be modelled as an ideal all-
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pass fractional delay FIR filter. This is basis of the following
convolutive mixing model [4]:

x(n) =
P∑
p=1

ap ⊗ sp(n) + ν(n) (1)

Where sp(n) is the pth source signal, ap is a vector of
coefficients for a fractional delay FIR filter, ν(n) is additive
noise, and n ∈ Z is the sample index. In the case of a uniform
linear array, the time delay associated between elements can
be modelled as an integer multiple of a unit time delay, τP ,
which is defined as:

τp =
d sin(θp)

c
(2)

Where d is the spacing between antenna elements. Thus the
broadband steering vector, ap can be modelled as:

ap =


δ[n− 0τp]
δ[n− 1τp]

...
δ[n− (M − 1)τp]

 (3)

Where δ[.] denotes an ideal fractional delay FIR filter. An
alternate way to model this would be to create an ideal unit
fractional delay FIR filter, ψp(z), where ψp[n] = δ[n−τp] and
ψp(z) • − ◦ ψp(n).

ap(z) =


ψ0
p(z)

ψ1
p(z)
...

ψ
(M−1)
p (z)

 (4)

The steering vector can thus be modelled with a Vandermonde
structure, by increasing the powers of this unit delay polyno-
mial, effectively cascading these unit delay filters

x(z) =
P∑
p=1

ap(z)sp(z) + ν(z)

= A(z)s(z) + ν(z)

(5)

A(z) = [a1(z),a2(z), . . . ,aP (z)] (6)

Where A(z) ∈ CM×P (z) is an array of steering vectors, and
s(z) ∈ CP (z) is a vector of sources, where the elements are
assumed to be a power series.

III. SPACE-TIME COVARIANCE MATRIX

In the case of narrowband direction finding, a common step
is to form a spatial covariance matrix. As the time delays are
modelled as simple phase shifts, only instantaneous temporal
correlations are of interest. This narrowband approximation is
no longer valid in broadband applications, and thus a range
of temporal correlations need to be considered. This leads to
the definition of the polynomial space-time covariance matrix,
where both spatial and temporal correlations are taken into
account.

Rxx(z) =
∞∑

τ=−∞
Rxx(τ)z−τ (7)

Where Rxx(τ) = E[x(n)xH(n− τ)]

It is important to note that this polynomial matrix is
parahermitian by construction, thus the PEVD techniques used
in [4] and [5] can be utilised. This polynomial space time
covariance matrix may also be expressed as:

Rxx(z) = A(z)Rss(z)Ã(z) + σ2
νI (8)

Rss(τ) = E[s(n)sH(n− τ)] (9)

Where Rss(z)•−◦Rss(τ). The source cross spectral density
matrix, Rss(z), is of particular importance here as the rank
of this will determine the number of significant eigenvalues1,
and hence the dimensions of the signal and noise subspaces
of the polynomial space time covariance matrix.

Rss(τ) =

r11(τ) . . . rP1(τ)
...

. . .
...

r1P (τ) . . . rPP (τ)

 (10)

It is easy to see that if the P sources illuminating the array
are independent, then this matrix will be diagonal, and of rank
P - yielding a P×M dimensional signal subspace of Rxx(z).
The steering vectors, ap(z), will be part of this subspace, and
thus orthogonal to the noise subspace.

However, when sources are strongly correlated or coherent,
this matrix will become rank deficient. The resulting estimated
signal subspace will contain a combination of the steering
vectors for the coherent sources, and thus the true steering
vectors will no longer be orthogonal to the noise subspace [2].

IV. SPATIAL SMOOTHING

The spatial smoothing technique will effectively restore the
rank of the source cross spectral density matrix, Rss(z) such
that subspace based algorithms, such as PMUSIC, will perform
as well as in the independent source scenario.

This technique involves separating the uniform linear array
into K identical overlapping sub-arrays, with L = M −K+1
elements per sub-array, forming space-time covariance matri-
ces for each sub-array, proceeded by finding the mean sub-
array covariance matrix. The z-transform of the signal at the
kth sub-array is modelled as:

xk(z) = A(z)D(k−1)(z)s(z) + ν(z) (11)

Where D(z) is a diagonal polynomial matrix where its ele-
ments are the unit delay FIR filters associated with each source.

1Because of the Vandermonde structure of the steering vectors A(z), this
will be of rank P , thus the dimensions of the signal subspace are solely
dependant on the rank of Rss(z), which will be P if this matrix is full rank
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D(z) =

ψ1(z)
. . .

ψP (z)

 (12)

The space-time covariance matrix for the kth forward sub-
array will take the form of:

Rxxk
= A(z)D(k−1)(z)Rss(z)D̃

(k−1)(z)Ã(z) + σ2
νI (13)

The spatially smoothed space-time covariance matrix,
R̂xx(z) is calculated via the mean of all K sub-arrays, and
takes the form

R̂xx(z) =
1

K

K∑
k=1

Rxxk

= A(z)
[ 1

K

K∑
k=1

D(k−1)(z)Rss(z)D̃
(k−1)(z)

]
Ã(z) + σ2

νI

(14)

R̂xx(z) = A(z)R̂ss(z)Ã(z) + σ2
νI (15)

Where R̂ss(z) is the modified source cross spectral density
matrix.

R̂ss(z) =
1

K

K∑
k=1

D(k−1)(z)Rss(z)D̃
(k−1)(z) (16)

From this, it is not obvious how this spatial averaging
technique will restore Rss(z) to full rank. The following proof
is an extension of Pillai [10] and Shan’s [2] work on spatial
smoothing techniques for narrowband scenarios.

A. Proof

For simplicity, let’s consider a scenario where all P sources
are coherent, as this provides a good model for the strongly
correlated case. Subsequently, a time series vector γ(τ) exists
such that:

Rss(τ) = γ(τ)γH(τ) (17)

With the transform pair γ(τ) ◦ − • γ(z). Thus the modified
source cross spectral density can be rewritten as:

R̂ss(z) =
1

K

K∑
k=1

D(k−1)(z)γ(z)γ̃(z)D̃(k−1)(z)

=
1

K
B(z)B̃(z)

(18)

It can be noted that the rank of the modified source cross
spectral density matrix, R̂ss(z), is the same as that of the
matrix B(z). This matrix can be rewritten as a product of a
polynomial diagonal, and Vandermonde matrix.

B(z) = [D0(z)γ(z),D1(z)γ(z), . . . ,Dk−1(z)γ(z)]

=

γ1(z)
. . .

γp(z)


ψ

0
1(z) ψ1

1(z) . . . ψk−1
1 (z)

...
... . . .

...
ψ0
P (z) ψ1

P (z) . . . ψk−1
P (z)


(19)

The rank of B(z) will be entirely dependant on the rank
of the Vandermonde matrix, providing the diagonal matrix is
at full rank, i.e. γ(z) contains only non-zero elements. This is
guaranteed due to the sources being coherent [2].

The resulting rank of B(z) will be min(P,K). Thus, the
modified source cross spectral density matrix will be full rank,
providing K ≥ P , i.e. there are at least as many sub-arrays as
there are coherent sources [10].

This spatial averaging technique does however, lead to an
overall reduction in the effective array aperture. The general
requirement of more sensors than sources still holds for the
sub-array length, i.e. L > P . Thus, for a situation with P
coherent sources present, the minimum overall array length
must be M ≥ 2P .

V. DIRECTION OF ARRIVAL ESTIMATION

The narrowband MUSIC algorithm is a well-known high
resolution DoA estimation technique. With the advent of the
polynomial EVD, a generalisation of this algorithm has been
extended to fit broadband scenarios. Two variations of the
polynomial MUSIC algorithm exist, the spatial-only MUSIC
(SP-MUSIC), and spatio-spectral MUSIC (SSP-MUSIC) [7].

A. The Polynomial Eigenvalue Decomposition

The spatially smoothed space-time covariance matrix from
(14) is decomposed into its polynomial eigenvectors U(z)
and eigenvalues Λ(z) using one of the PEVD algorithms [7].
The polynomial eigenvectors U(z) will have the paraunitary
property such that

U(z)Ũ(z) = Ũ(z)U(z) = I (20)

Hence orthogonality between subspaces. The decomposed
polynomial space-time covariance can be split into its signal
and noise subspaces, and takes the form:

Rxx(z) = U(z)Λ(z)Ũ(z)

= [Us(z) Un(z)]

[
Λs(z)

Λn(z)

] [
Ũs(z)

Ũn(z)

]
(21)

The polynomial eigenvalues are now representative of a
power spectral density. Thus, these polynomials can be eval-
uated for z = ejΩ to determine the power spectral density
of each eigenvalue. Due to the parahermitian property of the
space-time covariance matrix, these eigenvalues will be spec-
trally majorised such that λ1(jΩ) ≥ λ2(jΩ), . . . ,≥, λM (jΩ).
The number significant eigenvalues defines the dimensions of
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the signal subspace. The remaining eigenvalues are represen-
tative of the noise subspace, and are indicative of the noise
power, σ2

n.

B. Polynomial MUSIC Algorithm

The basis of the PMUSIC algorithm is the assumption that
the steering vectors are part of the signal subspace. The idea
is to scan the null space of the noise subspace, Un(z), with
a polynomial steering vector, aθ(z), and peaks will occur in
the spatio-spectrum, Pmu(θ,Ω), where aθ(z) = ap(z). This
steering vector is the same as in (3), where the ideal fractional
delay FIR filter can be approximated with either a windowed
sinc function, or via more advanced filter bank techniques [12],
followed by performing a z-transform.

Pmu(θ,Ω) =
1

ãθ(z)Un(z)Ũn(z)aθ(z)
|z = ejΩ (22)

The performance of the algorithm in (22) will be assessed in
the next section.

VI. SIMULATION RESULTS

To assess the performance of the spatially smoothed PMU-
SIC algorithm for strongly correlated sources, the MSME-
SMD PEVD algorithm [13] was performed on both the non-
spatially smoothed space-time covariance matrix, and on the
spatially smoothed version. The SSP-MUSIC algorithm is
subsequently used for spatio-spectral estimation. Comparisons
between the spatio-spectral estimations are made via the re-
sulting peak-height, and peak-width in this spatio-spectrum as
this is indicative of the algorithms angular resolution.

Both simulations were performed under identical anechoic
conditions, whereby two arbitrary wideband, coherent sources
are present with normalised frequencies of Ω ∈ [0.3π, 0.8π],
and directions of arrival of −40◦ and 30◦. The received
SNR is 5dB, whereby the noise is Gaussian, spatially and
spectrally white, and is uncorrelated with itself and the sources
present. The overall antenna array length is the same for both
algorithms (M = 7).

A. Standalone SSP-MUSIC

As mentioned in Section III, when strongly correlated
sources are present, the dimension of the signal subspace
does not coincide with the number of sources present. Figure
1 displays the power spectral density of the eigenvalues of
the non-smoothed space-time covariance matrix. Only one
eigenvalue is significant in magnitude, suggesting one source
present.

The assumption that the steering vectors are part of the sig-
nal subspace is still valid. However, as there are more sources
than signal eigenvectors, the latter will contain a combination
of the source steering vectors. Due to the Vandermonde
structure of these steering vectors, no linear combination of
these will result in a legitimate steering vector. This means that
the true steering vectors will no longer be orthogonal to the
noise subspace [2]. This is severely detrimental to the angular
resolution of the PMUSIC algorithm. This loss of resolution
can lead to knock-on effects as part of a larger system, such

Figure 1: PSD of polynomial eigenvalues of the non-smoothed
space-time covariance matrix

as a decreased probability of detection in passive applications.
Figure 2 displays the spatio-spectral estimation for the non-
spatiality smoothed case. While there are noticeable spatial
peaks around −40◦ and 30◦, the peaks are wide (∼ 20◦ 1 dB
width) and less than 5 dB in magnitude (relative to the floor).

Figure 2: SSP-MUSIC spatio-spectrum of 2 coherent sources

B. Spatially Smoothed SSP-MUSIC

As mentioned in Section IV, spatial smoothing will restore
the rank of the source cross spectral density matrix providing
the conditions K ≥ P , and L > P are met. In this particular
scenario, the 7 element antenna array is split into 3 overlapping
sub-arrays. This yields and effective array length of 5 -
satisfying the above condition. Figure 3 displays the PSD of
the polynomial eigenvalues. Two of which, have significant
magnitude over the same wide bandwidth.

The resulting estimate of the signal subspace will contain
the true steering vectors associated with each source. When
scanning the null space of the noise subspace, the true steering
vectors will be orthogonal to this. Leading to very tall, and
sharp peaks in the spatial spectrum with similar performance
to the uncorrelated case of the SSP-MUSIC algorithm [7], this
can be seen in Figure 4.
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Figure 3: PSD of polynomial eigenvalues of the spatially
smoothed covariance matrix

Figure 4: Spatially Smoothed SSP-MUSIC spatio-spectrum
with 2 coherent sources present

The spatially smoothed SSP-MUSIC algorithm produces a
spatio spectrum with a much higher angular resolution, with
a 1 dB peak width of ∼ 1◦. The spatial only characteristics
of the spatially smoothed, and standalone versions of the SSP-
MUSIC algorithm are displayed in Figure 5. This spatial only
representation is determined via spectral averaging through the
bandwidth of sources.

Figure 5: Normalised Angular spectrum comparing the SS and
non-SS PMUSIC algorithms at Ω ∈ [0.3π, 0.8π]

VII. CONCLUSION

Through the extension of a popular narrowband technique,
this paper has introduced an improved variation of the poly-
nomial MUSIC algorithm, providing a potential solution for
the problem of broadband direction of arrival estimation in a
multipath environment. The solution and proof proposed in this
paper is a direct polynomial analogue of the narrowband case;
demonstrating the power and elegance of polynomial matrix
techniques and the PEVD for broadband antenna array signal
processing.

Simulation results are presented to assess the performance
gain of using this spatial smoothing technique for coherent
broadband direction of arrival estimation in conjunction with
the use of polynomial MUSIC algorithm. The non-smoothed
PMUSIC algorithm encounters serious difficulties that are
manifested as a loss of resolution in the presence of strongly
correlated, or coherent sources. When the spatial smoothing
technique is applied to the polynomial covariance matrix, the
PMUSIC algorithm produces similar results to the case of
uncorrelated sources, with a relatively modest loss of aperture.
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