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Abstract—We investigate the problem of index coding, where
a sender transmits distinct packets over a shared link to multiple
users with side information. The aim is to find an encoding
scheme (linear combinations) to minimize the number of trans-
mitted packets, while providing each user with sufficient amount
of data for the recovery of the desired parts. It has been shown
that finding the optimal linear index code is equivalent to a
matrix completion problem, where the observed elements of the
matrix indicate the side information available for the users. This
modeling results in an incomplete square matrix with all ones
on the main diagonal (and some other parts), which needs to
be completed with minimum rank. Unfortunately, this is a case
in which conventional matrix completion techniques based on
nuclear-norm minimization are proved to fail [Huang, Rouayheb
2015]. Instead, an alternating projection (the AP algorithm)
method is proposed in [Huang, Rouayheb 2015]. In this paper,
in addition to proving the convergence of the AP algorithm
under certain conditions, we introduce a modification which
considerably improves the run time of the method.

Index Terms—Alternating projection, coded caching, index
coding, matrix completion, network caching, rank minimization.

I. INTRODUCTION

Let us consider a communication scenario in which a sender
wishes to transmit a set of packets to a number of receivers
over an error-free broadcast channel. Each receiver might have
a priori access to some of the packets (side information) and
is interested to receive a subset of the remaining packets.
Knowing the available side information at the receiver ends,
the sender wishes to broadcast a minimal number of coded
packets that enable all the receivers to obtain their desired
packets. This scenario is known as the index coding problem.

Index coding is motivated by many applications such as
network caching, video on demand, and cloud distributed
storage. For example in a caching network, each client oppor-
tunistically stores contents that might be needed in the future
(called cashed data). This way, a server receives multiple file
requests from the clients. A simple strategy is to separately
respond to each request. However, it might be possible to
reduce the transmission rate by combing requests and taking
into account the already cached data by the clients. In the
latter case, the server needs to combine the requested data via
encoding; thus, this problem is referred to as coded caching.
It is shown that under certain conditions, the coded caching
problem induces an index coding problem [1].

To better clarify the index coding problem, let us consider a
scenario with a single transmitter and three receivers {Ui }

3
i=1.

Further, let the transmitter have the packets X1,X2,X3 from
which X2, X3 and {X1,X2} are already available to U1, U2 and
U3, respectively. Next, each receiver Ui requests the packet
Xi . To respond to these requests, instead of transmitting three
simple packets, the transmitter has the option of sending two
coded packets of the form X1 + X2 and X1 + X3. It is easy to
verify that each receiver is able to retrieve its desired packet
from the broadcasted and cashed data.

The statement of the index coding problem was originally
introduced in [2]. One can observe many conceptual similari-
ties between index coding and network coding. In particular,
similar to network coding, linear methods are the dominant
approaches in index coding. In other words, it is common to
limit the transmitting packets to linear combinations of the
original packets. The equivalence of the linear index coding
to a matrix completion problem was shown in [3]. The goal
in a matrix completion problem is to find an m × n matrix A
with minimum rank by knowing a subset of its elements [4].
Equivalently, we look for the solution to

min
M∈Rm×n

rank(M) s.t : ‖PΩ(M) − PΩ(A)‖F < ε, (1)

where Ω is the index set of known entries of A and PΩ(M)
is an m by n matrix which is defined as

PΩ(M)i, j ,
{ mi, j (i, j) ∈ Ω,

0 (i, j) < Ω. (2)

For the index coding problem, we assume n users {Ui }
n
i=1, and

n packets {Xi }
n
i=1, where Ui requests to have the packet Xi and

has already cached a subset of other packets. In the equivalent
matrix completion problem, we are dealing with an n by n
matrix A with the known entries consisting of ones on its main
diagonal (indicating that user i wants the ith packet) and zero
(i, j) entries where user i does not have the j th packet on its
cash. Other entries of A are considered as missing. If A is the
matrix with minimum rank k that satisfies these constraints,
each of its rows can be represented as a linear combination of
k independent vectors v1,v2, · · · ,vk . Therefore, it is sufficient
for the transmitter to broadcast k linear combinations of the
packets, where the coefficients of the j th linear combination
are the elements of v j .

The linear index coding problem and its matrix completion
equivalent are in general NP hard [5]. In the context of matrix
rank minimization, it is known that under certain constraints,
relaxing the non-convex rank function with the nuclear norm
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of the matrix might not change the solution [6]; hence, the
problem can be solved with efficient convex optimization
methods. Unfortunately, when the known entries of the matrix
include the main diagonal this relaxation is gauranteed to
fail [7]. This explains why the proposed matrix completion
methods developed for the index coding problem such as
those in [7], [8] deviate from the standard nuclear-norm-based
techniques and usually lack rigorous convergence results.

The contribution of this paper is twofold: we first introduce
a modification on the AP-Index-coding algorithm of [7],
which considerably reduces its computational complexity and
enhances its speed. Next, we prove the convergence of the AP
Index coding algorithm under some conditions.

The paper is organized as follows: in Section II we review
the AP Index coding algorithm and introduce our method.
We provide the convergence analysis of the AP Index coding
algorithm in Section III, and present the simulation results in
Section IV. Finally, we conclude the paper in Section V.

II. ALGORITHM

A. The AP Index coding algorithm

Assume A is an m by n matrix with rank(A) = r �
min(m,n). Let us define the hyperplane HΩ ∈ Rm×n as
HΩ = {M ∈ Rm×n |PΩ(M) = PΩ(A)}. Suppose that L is
the solution of (1). Define the hyperplane HL ∈ R

m×n as
HL = {M ∈ Rm×n |Span(M) = Span(L)}. Obviously, L lies
on both HΩ and HL, and therefore, on their intersection. If
Span(L) was known, we could have estimated L by starting
from an arbitrary matrix and alternatively projecting it onto HΩ
and HL (until we reach an intersection). However, Span(L) is
unknown and its estimation is part of the problem. The main
idea in the AP Index coding algorithm is to sequentially esti-
mate Span(L) and apply the alternating projection technique.
For M ∈ HΩ and Q ∈ Om×r , where Om×r is the set of
matrices with unit-length and orthogonal columns (Span(Q)
represents an estimate of Span(L)), let us define f (M,Q) as

f (M,Q) = ‖QQTM −M‖22 . (3)

Indeed, f (M,Q) is the distance between M and the hyperplane
HQ = {N ∈ Rm×n |Span(N) = Span(Q)}. Now consider the
minimization problem

argmin
M∈HΩ,Q∈Om×r

f (M,Q). (4)

We find the solution to (4) by sequentially updating M and
Q. More precisely, we show in Lemma 1 that for a fixed M,
the best choice of Q that minimizes f (M,Q) is Ur , which is
the n × r matrix formed by the first r columns of U in the
singular value decomposition (SVD) of M = UΣVT . Similarly,
in Lemma 2 we show that for a fixed Q, the best choice of
M that minimizes f (M,Q) is the intersection of HΩ and HQ,
which is found by the alternating projection method.

Lemma 1. Suppose M ∈ HΩ with SVD M = UΣVT is given.
Then, the matrix formed by the first r columns of U denoted
by Ur minimizes f (M,Q) among all rank r orthonormal
matrices.

Algorithm 1 AP Index Coding Algorithm
input : Ω, PΩ(A), ε , iternum
output : completed matrix B

1: procedure AP INDEX CODING
2: r ← n
3: while error ≤ ε do
4: A0 ← PΩ(A)
5: r ← r − 1
6: for k = 0 : iternum − 1 do
7: [U,Σ,VT ] = SV D(Ak )
8: Ur ← first r columns of U
9: B = Ur × UT

r × Ak

10: Ak+1 = PΩ(A) + PΩc (B)
11: end
12: error = ‖PΩ(Ak+1) − PΩ(A)‖2
13: end

Proof. The operator QQT projects M onto HQ. Also note that
rank(QQTM) ≤ rank (Q) = r . Therefore QQTM is a rank r
approximation of M, and it is known that the best rank r
approximation of M is UrUT

r M. �

Lemma 2. For a fixed Q, the minimizer of f (M,Q) can be
found by the alternating projection method.

Proof. As f (M,Q) reveals the distance between M ∈ HQ and
the hyperplane HQ, solving (4) can be seen as the problem of
finding the shortest distance between the two hyperplanes HQ
and HΩ. This problem can be solved by starting from a point
in HΩ and alternatively projecting it onto HQ and HΩ. �

Algorithm 1 depicts the AP Index coding algorithm. This
technique was proposed in [7] for the index coding problem,
and also in [9] for the general problem of matrix completion.
However, both works heuristically derive the method without
proving the convergence of the method.

B. Our proposed algorithm

The singular value decomposition is a fundamental block
in most of the matrix completion techniques. However, SVD
is a costly algorithm with a complexity that scales like O(n3)
with the dimension n. In applications that are connected to
high-dimensional signals such as big-data, this imposes a great
challenge.

Here, we propose a method that uses the QR decomposition
instead of the SVD in the projection step of the AP Index
coding algorithm. By this modification, we will find a better
projecting direction with a less complicated algorithm that will
significantly decrease the run-time of the program. The steps
of our proposed algorithm and its pseudo-code are depicted in
Algorithm 2.

III. CONVERGENCE ANALYSIS OF THE ALGORITHM

In this section, we shall show that under some mild con-
ditions, the AP Index coding algorithm converges. First, note
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Algorithm 2 QRS
input : Ω, PΩ(A), ε , iternum
output : completed matrix B

1: procedure QRS
2: r ← 0
3: while error ≥ ε do
4: A0 ← PΩ(A)
5: r ← r + 1
6: Choose a random vector vnew ∈ R

n

7: V← [V|vnew]
8: for k = 0 : iternum − 1 do
9: V← Ak × AT

k
× V

10: [R,Q]← QR(V)
11: B = Q × QT × Ak

12: Ak+1 = PΩ(A) + PΩc (B)
13: end
14: error = ‖PΩ(Ak+1) − PΩ(A)‖2
15: end

that if the rank r of A is known, then, the k th iteration in the
AP Index coding algorithm can be rewritten as

Bk = Lr (PΩ(A) + PΩc (Bk−1)), (5)

where the initializing matrix is B0 = PΩ(A). Here, Lr (M)
stands for the best rank r approximation of M. We observe that
the distance of the space PΩc (A) from Span(A) and Span(AT )
plays a significant role in our convergence analysis. Thus, if
A = UΣV represents the SVD of A, we assume the followings
to proceed:
H1: for every X ∈ Rm×n , we have ‖UTPΩc (X)‖F ≤ α‖X‖F ,
H2: for every X ∈ Rm×n , we have ‖PΩc (X)V‖F ≤ α‖X‖F ,
H3: ‖PΩc (A)‖F < rσmin(A)2.
In the above assumptions, k = rank(A), σmin(A) is the
minimum singular value of A and α > 0 is a constant
satisfying the following inequality

α <


1 +

(2σmax(A) + ‖PΩc (A)‖F )

σmin(A)2 −
‖PΩc (A)‖2

F

r

‖PΩc (A)‖F



−1

. (6)

With these assumptions, we prove the following convergence
result:

Theorem 1. If H1-H3 hold, then, the AP Index coding
algorithm converges to A.

The proof is postponed to the appendix.

IV. SIMULATION RESULTS

The simulation results in [7] indicate that the AP Index
coding algorithm has a superior performance to some other
competing methods. We perform our simulation scenarios on
a work station equipped with an intel core i7-6500U and 8GB
of RAM. Further, each of the figures show the average results
over 100 realizations. For implementing network cashing
setup, we assume that each user caches any given packet with
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Fig. 1. Average rank of the result with number of iterations = 25 and tolerance
= 0.001
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Fig. 2. Average rank of the result with number of iterations = 25 and tolerance
= 0.01

probability p independent of other packets. We further set
the tolerance parameter in the Algorithm 2 as ε . We have
investigated the performance of our algorithm for different
number of users and different number of iterations. We have
also investigated the effect of tolerance on the resulting rank.
Fig 1 shows that the performance of our algorithm improves
as n increases. Fig 6 shows that our algorithm is less complex
compared to AP method and Fig 3 reveals that there is
not much difference in the performance of AP and QRS
algorithms.

V. CONCLUSION

In this paper we consider the AP Index coding algorithm
which is matrix completion algorithm for the index cod-
ing problem. We presented the convergence analysis of this
method. Then we introduced a new and faster method and
investigated its performance. The simulation results showed
a much better convergence time while the performance still
remains satisfactory. Moreover, as the number of users increase

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2677



0 0.2 0.4 0.6 0.8 1
Probability of cashing a packet by a user

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ra
n
k
 o

f 
th

e
 r

e
s
u
lt
 n

o
rm

a
liz

e
d
 t
o
 t
h
e
 n

u
m

b
e
r 

o
f 
u
s
e
rs

 
AP algorithm
QRS

Fig. 3. Average rank of the outputs of QRS and AP algorithms for one run
with number of iterations = 25 and tolerance = 0.001
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Fig. 4. Average time (in seconds) for one run with number of iterations =
25 and tolerance = 0.001

we saw that the performance of our algorithm improves. This
is an important point, since the complexity of other matrix
completion methods would not let us to increase the number
of user as much as desired.

APPENDIX

proof of Theorem 1. In this section, the aim is to find a
constant like 0 < µ < 1 such that ‖A−Bk+1‖F ≤ µ‖A−Bk ‖F .
Define Ck = PΩ(A) + PΩc (Bk ). Let’s denote the orthogonal
projection matrix into Span(A) as T. It is known that T = AA†
where A† is the Moore-Penrose pseudo inverse of A. Then we
have

‖A − Bk+1‖F = ‖A − TCk + TCk − Lr (Ck )‖F (7)
≤ ‖A − TCk ‖F + ‖(T − Lr )(Ck )‖F (8)
= ‖TPΩc (A − Bk )‖F + ‖(T − Lr )(Ck )‖F .

(9)

Now we will use the Davis-Kahan theorem [10] in order to
give an upper bound to the right hand of (9).
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Fig. 5. Average time (in seconds) for one run with number of iterations =
25 and tolerance = 0.01
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Fig. 6. Average runtime comparison between AP and QRS algorithms for
one run with number of iterations = 25 and tolerance = 0.001

Theorem 2 (Davis-Kahan). Assume that X, Y are Hermitian
n by n matrices and we have the decomposition

X = E0Σ0ET
0 + E1Σ1ET

1 (10)

X + Y = F0Λ0FT
0 + F1Λ1FT

1 (11)

where E = [E0 |E1] and F = [F0 |F1] are orthonormal bases
for the n dimensional space. Then

‖E0ET
0 − F0FT

0 ‖F = ‖F
T
1 E0‖F = ‖ET

1 F0‖F ≤
‖FT

1 YE0‖F

δ
.

where delta is chosen such that none of the eigenvalues of Λ1
are in the interval [σmin − δ,σmax + δ] where σmin and σmax
are the smallest and largest eigenvalue of Σ0, respectively.

Consider the SVD decomposition of A, A = USVT . Since
rank(A) = r , S has only r non zero entry on its diagonal. So
we can write

AAT = US2UT = UrS2
rUT

r (12)
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Where Ur is the r first columns of U, i.e. U = [Ur |Un−r ].
So, we set X = AAT , E0 = Ur , E1 = Un−r , Σ0 = Sr

and Σ1 = 0. We also set Y = CkCT
k
− X, F0 = Wr ,

F1 = Wn−r , Λ0 = diag(σ1(Y),σ2(Y), · · · ,σr (Y)) and
Λ1 = diag(σr+1(Y),σr+2(Y), · · · ,σn (Y)) (Note that W =

[Wr |Wn−r ] diagonalize Y i.e. WTYW is a diagonal matrix).

Note that using above notation, we have T = UrUT
r and

Lr =WrWT
r . So using Davis-Kahan theorem we have

‖T − Lr ‖F ≤
‖WT

n−r (CkCT
k
− AAT )Ur ‖F

δ
(13)

To have and lower bound for δ, we use the Weyl’s theorem
[11].

Theorem 3 (Weyl’s theorem). Assume δr and σr are the r th

singular values of matrices A and B, respectively. We have

|δr − σr | ≤ ‖A − B‖22 (14)

Define Ek = A − Ck = −PΩc (A − Bk ). Using this theorem
and the fact that AAT is a rank r matrix, we know

|σi (Ck ) | ≤ ‖Ek ‖2 i = r + 1,r + 2, · · · ,n. (15)

Therefore we can see that

δ ≥ σmin(Σ0) − σmax(Λ1) ≥ σmin(A)2 − ‖Ek ‖
2
2 . (16)

Substitution of above inequality into (13) gives us

‖T − Lr ‖F ≤
‖WT

n−r (AET
k

+ EkAT + EkET
k

)Ur ‖F

σmin(A)2 − ‖Ek ‖
2
2

(17)

Using the inequality ‖AB‖F ≤ ‖A‖2‖B‖ and knowing
‖WT

n−r ‖2 = 1, we have

‖T − Lr ‖F ≤
‖AET

k
Ur + EkVrΣr + EkET

k
Ur ‖F

σmin(A)2 − ‖Ek ‖
2
2

(18)

By the theorem’s assumptions we have

‖UT
r Ek ‖F ≤ α‖Ek ‖F (19)

‖EkVr ‖F ≤ α‖Ek ‖F . (20)

By the triangle inequality, it can be seen that

‖T − Lr ‖F ≤
‖AET

k
Ur ‖F + ‖EkVrΣr ‖F + ‖EkET

k
Ur ‖F

σmin(A)2 − ‖Ek ‖
2
2

.

(21)
Knowing ATUr = VrΣr and (18), implies

‖T − Lr ‖F ≤
(2σmax + ‖Ek ‖F ) α‖Ek ‖F

σmin(A)2 − ‖Ek ‖
2
2

. (22)

Moreover, using Ck = A + Ek , TA = A and LrA = A, we
obtain that

(T − Lr )Ck = (T − Lr )A + (T − Lr )Ek = (T − Lr )Ek (23)

and therefore

‖(T − Lr )Ck ‖F ≤ ‖(T − Lr )‖F ‖Ek ‖2. (24)

Now, by (22) and (24)

‖(T − Lr )Ck ‖F ≤
(2σmax + ‖Ek ‖F ) α‖Ek ‖F

σmin(A)2 − ‖Ek ‖
2
2

‖Ek ‖2. (25)

Using (19) and knowing T = UrUT
r , it can be seen that

‖TPΩc (A − Bk )‖F ≤ α‖Ek ‖F . (26)

Therefore, putting (25) and (26) into (9) result to

‖A − Bk+1‖F ≤ α‖Ek ‖F +
(2σmax + ‖Ek ‖F ) α‖Ek ‖F

σmin(A)2 − ‖Ek ‖
2
2

‖Ek ‖2.

(27)
Finally, using ‖Ek+1‖F ≤ ‖A−Bk+1‖F and ‖Ek ‖2 ≤ ‖Ek ‖F ≤√

r ‖Ek ‖2, it can be concluded that

‖Ek+1‖F ≤ α‖Ek ‖F


1 +

(2σmax + ‖Ek ‖F )

σmin(A)2 −
‖Ek ‖

2
F

r

‖Ek ‖F


 . (28)

The function f (x) = 1 + (2σmax+x)
σmin (A)2− x

r
x is a strictly increasing

function of x in the interval [0,σmin(A)2]. Since E0 = PΩc (A),
by the theorem’s assumption α f (‖E0‖F ) < 1. Therefore, by
defining µk = α f (‖Ek ‖F ), it can be easily seen that µ0 < 1
and

‖E1‖F ≤ µ0‖E0‖F ≤ ‖E0‖F . (29)

Therefore µ1 < µ0 and so ‖E2‖F ≤ µ1‖E1‖F ≤ µ2
0‖E0‖F .

Using a simple induction yields

‖Ek ‖F ≤ µk0 ‖E0‖F → 0 k → ∞. (30)

combining (30) with (28) give limk→∞ ‖A−Bk ‖F = 0, which
guarantees the convergence of the algorithm. �
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