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Abstract—As a special frequency estimation problem, harmon-
ics estimation has applications in speech and audio processing,
power systems, healthcare monitoring, etc. In this paper, we
make a first attempt to propose a gridless sparse method for
harmonics estimation exploiting the harmonics structure. The
method uses the atomic norm with carefully designed atoms and
is formulated as a convex optimization problem. Its performance
is demonstrated via numerical simulations.

Index Terms—Harmonics estimation, frequency estimation,
atomic norm, group sparsity, gridless sparse method.

I. INTRODUCTION

Line spectral estimation, the process of estimating the

frequency components of a complex signal given its discrete

samples, is a classical problem in statistical signal processing

and has broad applications. Conventional approaches, e.g.,

maximum likelihood estimation (MLE) and subspace-based

methods like MUSIC and ESPRIT, usually suffer from certain

well-known limitations, e.g., the need of the model order. In

contrast to this, sparse estimation methods attempt to find the

solution consisting of the minimum number of frequencies and

have demonstrated, mainly in the last decade, their superiority

in accuracy, robustness and flexibility. A key ingredient of ear-

ly sparse methods is parameter discretization/gridding, which

is performed to transform approximately the original nonlinear

continuous parameter estimation problem as a discrete sparse

signal estimation problem given a linear system of equations,

resulting in the difficulties of grid selection and performance

analysis. In the past four years or so, gridless sparse methods

have been developed to conquer the continuity and nonlineari-

ty issues and meanwhile provide strong theoretical guarantees

and reliable solutions based on convex optimization. A com-

prehensive overview of these sparse methods can be found in

[1], while readers can consult [2] for details of conventional

methods.

In this paper, we study the super-resolution of harmonics,

a special case of line spectral estimation. A harmonic is a

complex sinusoidal wave whose frequency is an integer mul-

tiple of a certain frequency, the fundamental frequency. The

sinusoidal wave corresponding to the fundamental frequency

is also called the first harmonic. Therefore, the frequencies

of harmonics are related and our task is to locate them. In

this paper we consider the case when multiple fundamental

frequencies can be present.

The necessity of estimating the fundamental frequency and

amplitudes of harmonics arises in various applications. In

speech and audio processing, the fundamental frequency is

called the pitch whose estimation is important in problems

such as source separation and classification [3]–[5]. In power

systems, the presence of the second and higher order har-

monics represents a type of voltage and current waveform

distortion and may result in power loss and damages to

equipments. Their estimation is therefore important for power

quality assessment [6]. In noncontact healthcare monitoring,

heart-rate is a vital sign of health quality, whose estimation

however is usually interfered by respiration harmonics [7].

Extensive studies have been done on this research topic.

One kind of methods first estimate the frequencies without

accounting for the harmonics structure using algorithms for

standard line spectral estimation and then form the harmonic

groups based on certain post-processing or correction steps.

The other kind of methods integrate the harmonics structure

into frequency estimation so that the estimation performance

can be improved and the estimation result is easier to interpret.

Following these ideas, algorithms inspired by conventional

frequency estimation methods can be found in [3], [6], [8]–

[10]. Several sparse estimation methods have also been pro-

posed in context of different applications (see, e.g., [11]–[16]).

However, these sparse methods are either based on parameter

discretization or cannot exploit the harmonics structure.

In this paper, we make a first attempt to propose a gridless

sparse method for harmonics estimation that exploits the

harmonics structure. The proposed method consists of two

key steps: 1) define a set of atoms to exploit the harmonics

structure, referred to as the group sparsity, and then minimize

the number of the fundamental frequencies using the atomic

norm [17], and 2) relate the group-sparse atomic norm to the

joint-sparse atomic norm in context of multiple measurement

vectors in [18] and then provide a semidefinite program (SDP)

formulation for the proposed method. Numerical simulations

are provided to demonstrate the performance of the proposed

atomic norm method, compared with the standard atomic norm

method that does not utilize the harmonics structure.

II. PROBLEM FORMULATION

Consider a complex-valued signal, y ∈ C
N , consisting of

a set of K harmonically related sources with (normalized)
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fundamental frequencies fk, 1, . . . ,K:

y =
K∑

k=1

L∑
l=1

skla (lfk) , (1)

where skl ∈ C is the coefficient for the lth harmonic with the

kth fundamental frequency, and

a (f) = a (f,N) =
[
1, ei2πf , . . . , ei2π(N−1)f

]T
(2)

is a sinusoidal wave with frequency f . In this paper, we do not

assume the knowledge on the number K of the fundamental

frequencies but the model order L of each harmonics group.

Given y, our objective is to estimate {fk} and {skl}.

III. PROPOSED GRIDLESS SPARSE SOLUTION

A. Atomic Norm Exploiting Group Sparsity

Let S = [skl] be a K × L matrix of coefficients in (1) and

sk be its kth row. Also let ck = ‖sk‖2 and φk = sk

ck
, and

hence ‖φk‖2 = 1. Then, (1) can be written as:

y =
K∑

k=1

ck

L∑
l=1

φkla (lfk) . (3)

Evidently, y is a linear combination of K elements in the set,

B, defined as:

B =

{
b (f,φ) =

L∑
l=1

φla (lf) : ‖φ‖2 = 1

}
, (4)

Here we refer to any element in B as an atom and B as the

set of atoms.

Following from [17], we define the atomic norm of y, with

respect to the set of atoms B, as:

‖y‖B
= inf

fk,φk,ck

{∑
k

ck : y =
∑
k

ckb (fk,φk) , ‖φk‖2 = 1

}
.

(5)

We propose to estimate the fundamental frequencies in y using

the above defined atomic norm. Concretely, we retrieve them

from the atomic decomposition of y at which the infimum of

the set in (5) is achieved. To do so, we need a computational

approach to the atomic norm, which is the task of the ensuing

subsection.

B. SDP Formulation for the Atomic Norm

We next provide an SDP formulation for the atomic norm

in (5). This will be done based on an alternative interpretation

of the atomic norm. In particular, let

yl =

K∑
k=1

skla (lfk) (6)

be the lth component of y in (1) consisting of the lth
harmonics, with

y =
L∑

l=1

yl. (7)

A key observation is that a sinusoidal wave with frequency

lf can be interpreted an l-fold undersampled version of a

sinusoidal wave with frequency f . In mathematics, a (lf)
is always a subvector of ã (f) = a (f,NL− L+ 1). For

l = 1, . . . , L, let the N × (NL− L+ 1) matrix Γ(l) be such

that

Γ
(l)
nj =

{
1, if j = nl − l + 1;
0, otherwise.

(8)

Then, we have that

a (lf) = Γ(l)ã (f) . (9)

Inserting (9) into (6), we have that

yl =

K∑
k=1

sklΓ
(l)ã (fk) = Γ(l)ỹl, (10)

where

ỹl =

K∑
k=1

sklã (fk) . (11)

It immediately follows from (11) that ỹl, l = 1, . . . , L
consist of the same frequencies, and in other words, they are

joint-sparse [18]. Moreover, the shared frequencies fk, k =
1, . . . ,K are exactly the fundamental frequencies of interest.

Following from this observation, we form an (NL− L+ 1)×
L matrix, Ỹ , as:

Ỹ = [ỹ1, . . . , ỹL] =
K∑

k=1

ã (fk) sk =
K∑

k=1

ckã (fk)φk. (12)

Define a new set of atoms, A, as:

A = {ã (f)φ : ‖φ‖2 = 1} (13)

and let ‖·‖A be its induced atomic norm. To relate
∥∥∥Ỹ ∥∥∥

A
and

‖y‖B, we have the following result.

Lemma 1: It holds that

‖y‖B = min
˜Y

∥∥∥Ỹ ∥∥∥
A
, subject to y =

L∑
l=1

Γ(l)ỹl. (14)

Proof: Let F ∗ be the optimal value of the optimization

problem in (14). We first show that ‖y‖B ≥ F ∗. To do so,

observe that for any atomic decomposition of y as in (5), using

the constructions above we can always find Ỹ and its atomic

decomposition as in (12), which satisfies y =
∑L

l=1 Γ
(l)ỹl

[by inserting (10) into (7)]. It follows that

F ∗ ≤
∥∥∥Ỹ ∥∥∥

A
≤

K∑
k=1

ck, (15)

where the second inequality follows from the definition of

‖·‖A. Since (15) holds for any atomic decomposition of y,

taking infimum at the right hand size of (15) and applying the

definition of ‖·‖B, we have that F ∗ ≤ ‖y‖B.

We can similarly show that ‖y‖B ≤ F ∗. To do so, suppose

that the optimizer of the optimization problem in (14) is given

by Ỹ
∗

and its atomic decomposition is as given in (12), where
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we replace K, ck, fk and φk by K∗, c∗k, f∗
k and φ∗

k respective-

ly, with F ∗ =
∑K∗

k=1 c
∗
k. Using the identity y =

∑L
l=1 Γ

(l)ỹ∗
l ,

we can obtain an atomic decomposition of y as in (3). It

immediately follows that ‖y‖B ≤ ∑K∗

k=1 c
∗
k = F ∗. So we

complete the proof.

Moreover, it can be concluded from the above arguments

that the atomic decomposition of y must be retrieved from

the atomic decomposition of the optimizer Ỹ
∗
.

Now we are ready to provide an SDP formulation for ‖y‖B.

In fact, this can be readily done if an SDP formulation of the

joint-sparse atomic norm ‖·‖A is available. Fortunately, it has

been derived in [18], to be specific,∥∥∥Ỹ ∥∥∥
A
=min

W ,u

1

2
√
NL− L+ 1

[tr (W ) + tr (T (u))] ,

subject to

[
W Ỹ

H

Ỹ T (u)

]
≥ 0,

(16)

where NL−L+1 equals the number of rows of Ỹ . In (16),

T (u) denotes a (Hermitian) Toeplitz matrix whose first row

is given by the elements of u. Inserting (16) into (14), the

following SDP formulation of ‖y‖B is obtained:

‖y‖B = min
W ,u, ˜Y

1

2
√
NL− L+ 1

[tr (W ) + tr (T (u))] ,

subject to

[
W Ỹ

H

Ỹ T (u)

]
≥ 0,

y =

L∑
l=1

Γ(l)ỹl.

(17)

C. Atomic Decomposition Retrieval

When the SDP in (17) is solved using standard SDP

solvers, the atomic decomposition of y can be retrieved from

its numerical solution. Concretely, following from [18], the

frequencies composing Ỹ
∗

can be retrieved from the following

Vandermonde decomposition of T (u∗):

T (u∗) =
K∗∑
k=1

p∗kã (f∗
k ) ã

H (f∗
k ) , (18)

where p∗k > 0 and K∗ = rank (T (u∗)). This decomposition

is unique if T (u∗) is rank-deficient and can be computed

using, e.g., ESPRIT (note that a computational approach can

also be found in [18] if T (u∗) has full rank). After that, c∗k
and φ∗

k in the atomic decomposition of Ỹ
∗
, as in (12), can

be computed using a least squares method. Note that, during

the same process, the atomic decomposition of y, as in (3), is

obtained.

D. The Noisy Case

The proposed atomic norm method can be modified and

applied in the case when the observed data are corrupted by

noise following a standard routine. In particular, assume that

the added noise in the data vector y has bounded energy, with

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequencies (Hz)

A
m

pl
itu

de

Ground truth
GS−ANM

Fig. 1. Super-resolution result of the proposed atomic norm method.
Fundamental frequencies and their group amplitudes (a.k.a. ck in the atomic
decomposition) are presented.

an upper bound η on its �2 norm. In this case we solve the

following atomic norm minimization problem:

min
z

‖z‖B , subject to ‖z − y‖2 ≤ η, (19)

where z denotes the signal part in y. This means that, among

all possible candidates, we find the one with the smallest

atomic norm as the signal estimate, and the fundamental

frequencies are retrieved from its atomic decomposition. Using

the SDP formulation in (17), (19) can be readily cast as the

following SDP (up to a positive scaling factor):

min
W ,u, ˜Y

tr (W ) + tr (T (u)) ,

subject to

[
W Ỹ

H

Ỹ T (u)

]
≥ 0,∥∥∥∥∥

L∑
l=1

Γ(l)ỹl − y

∥∥∥∥∥ ≤ η.

(20)

Note that the only difference between (20) and (17) is in

the last constraint. When the SDP is solved, the fundamental

frequencies and the coefficients can be retrieved following the

same procedures as in the noiseless case.

IV. NUMERICAL SIMULATIONS

We provide numerical examples to demonstrate the perfor-

mance of the proposed atomic norm method, which is referred

to as GS-ANM (group sparse atomic norm minimization). For

the purpose of comparison we consider the standard atomic

norm method, referred to as ANM, that exploits sparsity only

but does not utilize the group sparsity.

We first consider the noiseless case. In our simulation,

K = 2 fundamental frequencies are selected as f1 = 0.1
and f2 = 0.24, with a number L = 3 of harmonics for each.

The coefficients of the harmonics are randomly generated from

a standard complex Gaussian distribution. N = 20 samples
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Fig. 2. Super-resolution results of the proposed and the standard atomic
norm methods. All frequencies and their amplitudes are presented.
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Fig. 3. Super-resolution result in the noisy case. Fundamental frequencies and
their group amplitudes (a.k.a. ck in the atomic decomposition) are presented.

are collected to super-resolve the harmonics. The estimation

results are presented in Figs. 1 and 2. It can be seen from Fig.

1 that the fundamental frequencies are exactly recovered using

the proposed method. In contrast to this, estimation errors exist

for the standard atomic norm method. Moreover, since the

group sparsity cannot be exploited in the latter, it is not evident

how the estimated frequencies are harmonically related to each

other.

We next consider a noisy case in which white circular

complex Gaussian noise is added, resulting in a signal-to-

noise ratio (SNR) of 20dB. It can be seen from Fig. 3 that

the fundamental frequencies can be stably estimated from

the noisy data, though small spurious peaks can be present.

Compared to the standard atomic norm method, the estimation

result of the proposed method is easy to interpret and appears

to be closer to the ground truth (see Fig. 4).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Frequencies (Hz)

A
m

pl
itu

de

Ground truth
ANM
GS−ANM

Fig. 4. Super-resolution results in the noisy case. All frequencies and their
amplitudes are presented.

V. CONCLUSION

In this paper, the harmonics estimation problem was stud-

ied using the atomic norm, with carefully designed atoms

exploiting the harmonics structure. An SDP formulation of

the atomic norm was provided by relating it to the existing

joint-sparse atomic norm. Its performance was illustrated via

numerical simulations. While this paper makes the first step to

a systematic gridless sparse approach to harmonics estimation,

the proposed method can be improved in several aspects, e.g.,

removing the need of the model order of each harmonics group

and taking into account the possible presence of non-harmonic

sinusoidal waves. Besides, theoretical performance should be

investigated.
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