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Abstract—Previous efforts in sound source localization have
extensively studied algorithms for localization and separation
with differing kinds of microphone arrays, and with sophisticated
separation algorithms with high computational complexity. The
basic goal of this study is to implement a system that iteratively
changes its direction to move towards the source. Low-complexity
is a requirement, since the platform used is a Raspberry Pi. The
first objective in this project was to identify the location of a single
source. The second objective was to distinguish voice from noise
or instrumental music, accomplished using a band-pass filter.
Classification using a Support Vector Machine was found to be
too slow to be a viable method to run on the Raspberry Pi. The
system thus created is a low-cost, low-computational alternative
to sound source localization. Future work could consider using
more robust, rule-based methods that are computationally viable
to run on the Raspberry Pi.

Keywords—Acoustic signal processing, Source separation, Dig-
ital filters.

I. INTRODUCTION

The aim of this study was to implement a computationally
inexpensive, iterative system to follow a human voice in real
time, using low cost electronics and processors. Sound source
localization does not require direct line of sight, and can be
implemented relatively more easily than vision-based local-
ization methods [7]. Thus, acoustic-based source localization
methods can work well in environments with less-than-ideal
conditions. Various methods have been used in acoustic sound
source localization, including the use of microphone arrays,
transfer functions that model the human system of hearing
[6], or machine-learning based methods [10]. Implementing
a standalone method for direction estimation with low cost
electronics would mean using as simple an algorithm as
possible, with as few resources as possible, even if it means
compromising on precision and accuracy. Enabling the system
to follow the voice iteratively, and get more accurate as it
moves closer to the sound, would compensate for this lack of
precision. Various algorithms were tested on the Raspberry Pi,
and the most suitable one was chosen for the task.

Some constraints and points that should be considered
while approaching the problem of acoustic source localization
with robots are [1]:

• Echoes and Reverberation: Reverberation confuses the
localization algorithm, as the sound reflected off a sur-
face from a frame of samples could reach the micro-

phone and interfere with the next frame of audio, caus-
ing an inaccurate calculation of time delay between
each channel. Thus, in very reflective environments,
we expect the algorithm to have low performance.
Literature mentions the use of reverberation filters [2];
however, in this paper, a simple power comparison has
been used, checking whether the power in the left and
right channel is comparable, using the fact that there
will be some attenuation in the signal after reflection.

• Noise: High noise levels reduce the Signal-to-Noise
Ratio of the signal, making the algorithm less accurate.
Noise suppression algorithms are available in litera-
ture, [3], but in this paper, a simple power threshold
has been used. The power of each frame has been
computed. The minimum power amongst all frames
so far has been computed, and this has been assumed
as the background noise power level. A ratio of the
current power to the background power distinguishes
between stray noise and an acoustic event.

• Source Specificity: The robot should be able to distin-
guish between as well as separate different acoustic
sources. Existing methods to do so have referenced
methods such as Non-negative Matrix Factorization,
which is fairly computationally expensive. The ap-
proach used in this paper is to have a simple frequency
cutoff, assuming that each source occupies a specific
part of the spectrum of the frame.

• Latency: Latency is defined as the time difference
between stimulus and response to stimulus. It is es-
sential for the system to have a low latency for our
application, else the algorithm would take too long
and thus be too discontinuous to be of any practical
use.

• Computational Expense: The amount of computa-
tional expense acceptable in the system depends on
the platform used. For a robot, limited hardware ca-
pabilities mean that algorithms should try and reduce
the computations performed. This is particularly true
on the Raspberry Pi, which has limited real-time com-
putational capabilities. There is a trade-off between
computational power and accuracy.



II. PREVIOUS EFFORTS

Previous approaches to sound source localization have
extensively studied algorithms for localization and separation,
both on platforms with vast computational resources as well as
those with limited computational power [4]. Some approaches
have taken inspiration from the human hearing system, which
is binaural and uses pinnae to give additional cues about
direction [5]. Further approaches have studied the effect of the
shape of the human head on localization, and have attempted
localization with a humanoid shape [6]. Some literature has
gone beyond binaural source localization, and have used mul-
tiple microphones to localize a source in 3 dimensions with
high accuracy [7]. Source localization in one plane is enough
for most ground robots found in literature. Two microphones
can only localize a sound in one plane, with an inherent
ambiguity present in whether the sound is coming from the
front or from behind the robot. This can be removed either
by using three non-aligned microphones [8], or by using two
microphones, listening and finding an angle, rotating the robot
by some angle, listening again and finding the correct direction
of the sound in 360o. One attempt to take inspiration from the
binaural human system mentions this method, to resolve the
ambiguity between the front and back position of sound [9].
This approach, however, used a robot with a higher processing
power than the Raspberry Pi, and does not attempt source
separation. One very unique approach to this problem was to
use a single microphone and a pinna-like structure to learn
the direction of sound in 3 dimensions [10]. Some efforts
involving auditory signal processing go beyond the simple
task of localization and look at predicting human responses to
auditory events. The ’Two!Ears’ project at TU Berlin notes that
’while many models that mimic the signal processing involved
in human visual and auditory processing have been proposed,
these models cannot predict the experience and reactions of
human users’ [11].

The methods described so far have used omnidirectional
microphones (microphones which record the same signal in
all spatial directions). Literature extensively describes an al-
gorithm called Generalized Cross-Correlation (GCC) in which
the delay estimate is obtained as the time-lag which maximizes
the cross-correlation between filtered versions of the received
signals [12]. Another method is the Steered Response Power
(SRP), which is a function generally used to aim a beamformer.
The beamformer acoustically focuses the array to a particular
position or direction in space [13]. The SRP algorithm has
been shown to be more accurate than the GCC algorithm, but
often at a high computational expense (sec. 8.1, [13]).

III. METHODOLOGY

A. TDOA Estimation

The direction of the sound source was estimated using
the InterAural Time Difference (ITD) method, as opposed
to the InterAural Level Difference (ILD) method. This is
accomplished using time difference between the left and right
channel of a pair of microphones mounted on a vacuum cleaner
robot (Roomba). Cross-correlation of the signals in the left and
right microphones is used to calculate the time delay of the
arrival of signal at the left and the right microphones.

Fig. 1. Diagram to calculate angle of arrival of acoustic source

The Cross-correlations rxy of two signals x and y of
length N is expressed as (Section 2.6, [14]):

rxy(l) =

N−|k|−1
∑

n=l

x[n]y[n− l] (1)

where k = 0 for l ≥ 0 k = l for l ≤ 0

The peak in the cross-correlation signal indicates the index
at which the two signals are similar. Using the sampling rate
of the signal (fs), the time difference can be computed as :

t =
ceil( 2N−1

2
)− argmax(rxy)

fs
(2)

where t is the computed delay in seconds, and ceil(x) is
a function which returns the smallest integer greater than or
equal to x. The output signal rxy is of length 2N − 1.
argmax() are the points of the domain (arguments) of some
function at which the function values are maximized.

B. Angle Finding

In order to compute the angle of arrival from the time delay
of arrival of the signal between the left and right channel of
the stereo microphone pair, an assumption is made that the
distance between the source and the system is much more
than the distance between the left and right microphones.
Thus, the angle made by the source at both the microphones
is approximately the same. The angle of arrival can thus be
computed by using the time delay with the help of fig 2, as :

cos θ =
τ · c

d
(3)

Since only the angle of arrival of sound is known, and
not the plane in which the source is, the source could be
localized anywhere on a cone with an aperture angle equal to θ.
This is called the ’cone of confusion’ [15]. For 3 dimensional
localization applications, at least 4 microphones would need
to be arranged in a tetrahedron, to get measurements from at
least 3 pairs of microphones. Once three angles are computed,
three cones of confusion are obtained, and the intersection of
these three surfaces will indicate the actual direction of the
source. This method cannot be used to determine the distance
of the source from the microphone.



Fig. 2. Intersection of cone of confusion with the horizontal plane

In our application, the robot can only move in the 2
dimensional horizontal plane, and so the only relevant angle
would be in the plane parallel to the ground. Thus, the possible
direction of the source can be found by finding the intersection
of the cone of confusion of the two microphones with the
horizontal plane.

The intersection of the cone with the horizontal plane gives
two possible directions of arrival of the audio source : one ’in
front’ of the Roomba robot, and one ’behind’ it. Thus, the
cross-correlation method can only localize the sound in 1800;
in order to localize the sound in a plane in 3600, the entire
system is rotated by 50 once after taking an initial reading
of the time difference. This allows the system to determine
whether the sound source is behind it, or in front, which
allows it to determine the angle of arrival of the source in the
horizontal plane. This takes inspiration from the way humans
localize sound.

C. Frequency Limitations

If the acoustic source is a single pulse, finding the time
difference at different microphones is a simple task. However,
if the acoustic source is a signal which is continuous in time,
such as a cosine of fixed frequency, then we need a phase
difference of at most π between the two signals, in order to
determine which signal is leading the other. To satisfy this
condition, the distance d between the microphones should be
less than half of the wavelength of the incoming sound, so that
(eqn. 4.13, [17])

d ≤ λ/2 (4)

With a spacing of about 15 cm between our ears, humans
can use Inter-Aural Phase Difference to localize sound up to a
frequency of about 1kHz. For frequencies of incoming sound
greater than that, humans use Inter-Aural Level Differences
to localize sound. In the experiment, the microphones were
placed at a distance of about 8cm, which allows for a higher
frequency cutoff of about 2kHz.

D. Voice-Music Discrimination

The task of voice-music discrimination was done using a
spectral flatness measure and a low-pass filter on the individual

channels of the stereo microphone pair.

Music has its spectral energy concentrated at certain partic-
ular frequencies, whereas white noise has it’s spectral energy
spread over most of the spectrum. The Spectral Flatness
Coefficient computed over the frequency spectrum for each
window indicates the ’flatness’ of the spectrum, thus serving
as a useful way to distinguish between tonal sounds (voice or
music) and atonal sounds (noise).

Consider a signal x of length N samples, framed into m
segments of size N/m.
The Spectral Flatness Measure (SFM) is then defined as: [18]

SFM = log10
[AM(X(m))

GM(X(m))

]

(5)

for the mth frame of the signal.

IV. OUR NEW APPROACH

Voice-Music discrimination was done using a frequency
cutoff, in the form of an elliptic low-pass filter, with a 60 dB
stopband attenuation and a frequency cutoff of 300 Hz. This
frequency was chosen because it is close to the fundamental
frequency of the human female voice [16]. It was assumed
that the music used would be of a much higher frequency than
300 Hz, and of a much higher frequency than the human voice.
Instruments like the higher notes of a violin, a piccolo or a flute
would satisfy this assumption. Thus, the high frequency music
was filtered out, and the direction of the voice was estimated.

A. Filtering

Using a frequency cutoff near the fundamental frequency
of the human voice (usually below 300 Hz for a human
female voice) is a low-complexity approach to the problem
of separating voice from mixed speech-music signals. The
method would work if the same filter is applied to the left
and right channels of the microphone. If voice and music
are playing simultaneously, voice would be dominant in the
low frequency region although there will be some spectral
content from the music signal. Thus, the Robot would take
the dominant signal as the voice signal, compute the angle
and move towards the voice. When music is playing without
any voice, there will still be some signal content in the low
frequency region. Thus, the Roomba robot will pick up this
signal in the low frequency region, compute the angle of arrival
and move towards it. The computation of the angle should
not be affected by the application of the low-pass filters, if
exactly the same filter is applied to both channels. Low-pass
filtering was found to be a reasonably accurate, low-complexity
solution for speech-music separation.

The elliptic filter has a higher ripple than the butterworth
filter, but provides the minimum required attenuation in the
stopband and maximum admissible attenuation in the passband
at a lower order than the butterworth filter. This makes it more
suitable for real-time applications. ( Section 7.6, [19]).

The elliptic filter used in the project was a fourth order
bandpass digital filter, with a lower cutoff of 65 Hz and a
higher cutoff of 350 Hz. It has a passband attenuation of 5
dB and a stopband attenuation of 60 dB. It was realized with



Fig. 3. Experimental Setup

the ’ellip’ filter from the SciPy package from Python. The
parameters were chosen according to the background noise
conditions and frequencies of voices and music in the place of
testing.

B. Experimental Setup

Two separate microphones were connected as a stereo pair,
via a USB sound card, to a Raspberry Pi. The RPi was placed
atop a Roomba robot. The RPi was connected to the Roomba
robot via a serial interface board [20]. The setup is shown in
fig 3.

Python’s PyAudio module was used to record audio from
the microphone pair. Once the PyAudio object was instantiated
and the stream was opened, a frame of 1024 samples was ac-
quired and processed. Once the frame was acquired, the stream
was closed, and the audio was separated into left and right
channels by separating odd and even samples. An identical
digital elliptic filter, as described in IV-A, was applied to the
left and right channels of audio samples. Cross-correlation of
the two signals gave an estimate of the time-delay between the
left and right channel signals. Using the time delay between
the left and right channels, the angle of arrival was computed.
Once the angle was found, the Robot was turned anticlockwise
by 50 and the audio stream was opened once again. Another
frame of data was acquired, and once again, the angle was
computed. Based on whether the angle increased or decreased,
the Robot turned in the clockwise or anticlockwise direction
toward the source, and moved forward by 150 cm. The process
repeated until the program was stopped.

Source code for the project can be found on GitHub, [21],
along with a brief explanation of each code.

V. RESULTS

The system was tested with an instrumental version of a
song on the flute playing from a device kept at one end of the
room on the ground, and a singing voice at the other end of the
room. It was observed that the robot would iteratively move
towards the singing voice when both the instrumental music
and the singing voice were played. When the singing voice

was paused, the robot would move towards the instrumental
music.

The Roomba was found to turn in the direction of the voice,
with noise and music playing from elsewhere, when the voice
was above a certain volume level and within some distance
from the Roomba. If only music was played, the Roomba
moved towards the music. The accuracy of localization in-
creased as the Roomba got closer to the source - such that
the Roomba eventually reached the sound source, effectively
following it. These tests were recorded and can be found on
the TU Ilmenau website [22] :

• Roomba iRobot responding to foot-tapping on the
ground

• Roomba moving towards voice despite music playing
in the background

VI. CONCLUSION

This paper aimed to investigate the applications of acoustic
source localization and source separation in robot control,
and implement a system for source localization on the
Raspberry Pi, a processor with limited computational power.
The aim was to take an approach that would have the least
complexity in terms of number of elements and complexity
of algorithms. In this aspect, the binaural microphone system
implemented on the Roomba iRobot with the Raspberry
Pi satisfies the goal of the study. The biologically-inspired
method of using two microphones accompanied by a turning
movement enabled us to localize the sound source in 360o

without having to use more than two microphones, which
avoided the trouble of synchronizing multiple microphones.
The solution of using a low-pass filter on each frame of
data instead of a complex source separation algorithm
enabled the system to run smoothly and with an acceptable
latency of a few seconds. The resultant system iteratively
changes its direction and moves toward the source, and
becomes more accurate as it gets closer to the source. The
system works with less accuracy in a noisy,reverberative
environment, but the robot still reaches the source, albeit
after a larger number of iterations. Due to the final goal of
an iterative system, it is not needed to know the distance of
the source from the robot. The system can also distinguish
between a low frequency tonal sound such as voice and a
higher frequency tonal sound such as instrumental flute music.

The current system still has a number of limitations. It
cannot distinguish between two tonal sounds which share
the same or mostly similar space in the frequency spectrum.
Although it does work in a noisy environment, it is still fairly
susceptible to noise and reverberations. Future work in this
direction could look closer into developing more sophisticated
algorithms with low computational complexity for source-
separation. Noise suppression algorithms and reverberation
filters could be included to improve the accuracy of the system.
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