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Abstract—We propose a novel framework for reducing distant
noise by using a distributed microphone array; reducing noise
propagated from a far distance in real-time. Previous studies
have revealed that a distributed microphone array with an
instantaneous mixing assumption can effectively reduce noise
when the target and noise sources are significantly far apart.
However, in distant noise reduction, the target and noise sources
are not usually instantaneously mixed because the reverberation-
and propagation-time from the noise sources to a microphone is
longer than the short-time Fourier transform (STFT) length. To
express reverberation- and propagation-parameters, we introduce
a multi-delay noise model that represents the reverberation-
time as a convolution of the transfer-function-gains and the
noise sources and the propagation-time as time-frame delays.
These parameters are estimated on the basis of the maximum
a posteriori (MAP) estimation. Experimental results show that
the proposed method outperformed conventional methods in sev-
eral performance measurements and could reduce distant noise
propagated from more than 100 m away in a real-environment.

Index Terms—Distant noise reduction, distributed microphone
array, MAP estimation, and transfer function.

I. INTRODUCTION

Noise reduction has been used as a front-end technique
of various practical applications such as automatic speech
recognition [1], [2]. Recently, it has been applied to emerging
applications such as anomaly detection in sound for detecting
faulty equipment in a factory [3] and immersive audio field
representation for sports broadcasting [4], [5]. Since these
emerging applications are used in a large-scale space, noise
sources often distribute far from a microphone. For example
at a baseball game, cheering-noise in the outfield stands is
propagated more than 100 m away from the main-microphone,
which is placed close to the home-base to record ball hit-
ting/catching sounds and the umpire’s voice. In this study,
we aim to build a novel framework to reduce distant noise
and demonstrate that our framework reduces noise propagated
from far away in real-time.

Microphone arrays are commonly used to reduce noise.
Traditional techniques use densely arranged microphones and
have focused on the both of the difference of the amplitude
and the phase spectrum [6]—[8]. Since these methods are based
on the rigorous physical modeling of the wave, practical-use
cases in complicated reverberation environments have not been
adequately investigated. Meanwhile, distributed microphone
array techniques are investigated for noise reduction in real-
environments [9]-[13]. These techniques use the microphones
close to each source, and a time-frequency (T-F) mask is
calculated only from the amplitude-spectrum of the observed
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Fig. 1. Observation model of distant noise sources using distributed micro-
phone array.

signals. The latter approach would be more robust in real
environments because the rigorous physical model is not
needed and noise is reduced based on only the characteristic
of the observed signals.

An assumption of distributed microphone array techniques
is that the observation can be modeled as the instantaneous
mixing of each source in the time-frequency domain [11]-
[13]. This assumption has often been satisfied when a small-
scale space is used such as a conference room. However,
in distant noise reduction, this assumption is not valid for
the following reasons. When the reverberation-time, i.e., the
impulse response length, is longer than the short-time Fourier
transform (STFT) length, the reverberation cannot be ex-
pressed by multiplying a transfer-function to a sound source
in a single STFT-frame. In addition, when propagation-time
is longer than the STFT length, a sound source observed by
each microphone distributes in different STFT-frames. If the
impulse response and the propagation-time are known, the
above problem can be solved by using a sufficiently long STFT
length. However, the impulse response and the propagation-
time are unknown in practice.

In this study, we propose a framework to reduce distant
noise by using a distributed microphone array. First, we
introduce a multi-delay noise model on the basis of the strategy
of the “Multidelay block frequency domain adaptive filter”
(MDF) [14], to express long reverberation- and propagation-
time while using a short STFT length. In the multi-delay
noise model, long reverberation-time is represented as a con-
volution of the transfer-function-gains and the noise sources,
and the propagation-time is compensated by frame-shift rep-
resented as time-frame delays. Thus, the parameters of long
reverberation- and propagation-time to be estimated become
transfer-function-gains and time-frame-delays. Then, we ex-
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tend the multi-delay noise model to a probabilistic model and
estimate these parameters on the basis of the maximum a
posteriori (MAP) estimation.

The rest of this paper is organized as follows. Section II
briefly introduces the conventional noise reduction. Then, in
Section III, a multi-delay noise model and a distant noise
reduction framework are proposed. After investigating the per-
formance of the proposed method in Section IV, we conclude
this paper in Section V.

II. CONVENTIONAL METHOD

A. Noise reduction using time-frequency mask
Let us consider the problem of estimating a target source
SU(})T from an observed signal recorded using M microphones.

We define the microphone placed close to the target source as
microphone number m = 1, and its observation is written as

X8 =50+ N, e))

where Nu(,l; is the noise propagated to the microphone m = 1
consisted of I — 1 noise sources as S(E,i,)T (1e{2,..,1}),we
{1,2,..,9} and 7 € {1,2,...,T} denote the frequency and
time indices, respectively. To simplify of notation, we assume
SL 7 includes the transfer function from the target source to
the microphone m = 1. Hereafter, we call the microphone
m = 1 the “main-microphone.”

In noise reduction using T-F masks, the output signal .SA'W,T
is obtained by multiplying a T-F mask to X(,(}T as

Sw T — Gw TXw T (2)

where G, - is a T-F mask such as the ideal-ratio-mask (IRM)
[15] defined as

|5 [XEr| — NG|
s+
From (3), to calculate G, -, we need to estimate the amplitude-
spectrum of noise |NS;| from the observed signals.

3)

w,T =

B. T-F mask design based on instantaneous mixing

Typical noise reduction techniques represent X(,(J 7 as in-
stantaneous mixing of I sound sources, thus NO(J T can be
represented as Nf}l = Zi:Q Aful Z)SL,)ﬂ where Aw is the
transfer-function from ¢-th source to the target microphone.
Moreover, some literature on distributed microphone arrays
assumes the additivity of the amplitude-spectrum [11]-[13].
Thus, the amplitude spectrum of the observation of the target
microphone can be expressed by the product sum of the
amplitude-spectrum omitting the phase as

X~ (1)|+Z|A(“)IISS )
Therefore, to d¢51gn a T-F mask, we need to estimate
|A5J1’7’)\ and |S£1)T| To estimate these parameters, previ-

ous studies using distributed microphone arrays [11]-[13]
have adopted a power-spectrum-density (PSD)-estimation-in-
beamspace method [16] and/or the transfer-function-gain non-
negative matrix factorization (NMF)
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III. PROPOSED METHOD

When the target source and the noise sources are far apart,
they are not instantaneously mixed. In the following sections,
guided by the strategy of MDF, the observed signal of distant
noise sources is represented in a multi-delay noise model in
Section III-A. Then, the multi-delay noise model is extended
to a probabilistic model in Section III-B and the parameter
estimation procedure is detailed in Section III-C.

A. Multi-delay noise model for distant noise reduction

In this section, we model an observed signal of distant noise
sources on the basis of the following assumptions:

1) The positions of each source and microphone are fixed.

2) Densely placed noise sources are regarded together as
one noise source group Sﬁ,i)T as shown in Fig. 1.

3) The number of noise groups is I —1 = M —1, and each
microphone is placed close to each noise group. Then,
we assume that | XU | ~ |SU™| holds for microphone
m={2,..,M}.

First, to model long reverberation- and propagation-time, we
adopt the strategy of the MDF [14]. In the MDF, to express
a long reverberation-time, the transfer-function is separated
into (K + 1)-blocks, and the observed signal is expressed as
the convolution of the transfer-functions and each source. To
represent a propagation-time, we extend the MDF by using a
time-frame-delay D,,, and Nu(,ll is expressed as

N 17)- Z ZA(l m) (m,)_Dm_k, 5)

m=2 k=0

where A( m) is k-th block transfer-function from m-th noise
source group to the main-microphone, and D,, € N} is a
time-frame-delay corresponding to the propagation-time from
the m-th noise source group to the main-microphone. Here
we assume the additivity of the amplitude-spectrum likewise
(4). Then, by replacing |SU™| to |X5™)| in accordance with
assumption 3), (5) can be rewritten as

S )

m=2 k=0

Nxm (©6)

where ai";g = |A((U1’km)|. Hereafter, we call (6) a “multi-delay
noise model” The unknown parameters in the multi-delay
noise model are transfer-function-gains and time-frame-delays

a:= {a(m)\m =2,.. Mw=1,..,
={Dmlm=2,...., M }.

O k= 'aK},

If these parameters have been estimated in advance, distant
noise can be reduced by (3) and (6) as shown in Fig. 2. Thus,
we define the problem of reducing distant noise as a problem
of estimating © := {a,D}.
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Fig. 2. Multi-delay noise model and distant noise reduction framework.

B. Probabilistic extension of multi-delay noise model

To estimate © from training data in advance, we adopt a
machine learning approach. We now extend the multi-delay
noise model as a probabilistic model, and O is trained so as
to maximize an objective function.

Since the transfer-function-gains and time-frame-delay are
physical variables intrinsically, estimation accuracy would be
improved by designing a probabilistic model to reflect its
physical characteristics. Thus, we define prior distributions of
each parameter to incorporate the physical characteristics to
a probabilistic model. Then, the posterior probability of © is
used as the objective function, and © is estimated as

© « arg max J(0), 7
©
(1) R R
J(©) =Inp(6|X) =In p(X*]O, X()g)(@)p(X )’
=Inp(XM|e,X") + Inp(®), @)

where X = {XM™m = 1,. M} X = (XM =

., M}, and X(™) includes |X | for all w and 7. Addi-
tlonally, since any prior 1nf0rmat10n of X and X’ cannot be
obtained, we use the uninformative prior for p(X) and p(X*),
and omit it for simplify of the optimization. Here we assume
a and D are independent, and then (8) can be written as

J(©) Yja,D,X") +Inp(a) + Inp(D). (9

To calculate (9), we model each distribution. First, the
target source is assumed to be a temporally sparse event
such as a hitting sound and the umpire’s voice. Then, since
|X£1)T| = |Nb(ﬂ| holds for most time-frames, we now assume
the following probabilistic model

In |X£)1)T| =1In |Nu(}12| + ey s

= Inp(X!

(10)

Assuming the error value ¢, . follows the Gaussian distribu-
tion NV (e - 2), the likelihood function of an observed
signal is written as

Q T
p(XW]a, D, X"):= ] HN(ln X))

w=171=1

N{)].0%).

(1)
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Next, we define the prior distribution of a. Since transfer-
function-gains are non-negative continuous variables, its prior
distribution should be modeled to satisfy its constraint. As an
implementation to satisfy the constraint, p(a) is defined by an
exponential distribution as
(m)
a’w k

Q M
w=1m=2 k=0 Yo, k {
where a(m) > 0. Since the transfer-function-gain has a
physical characterlstlc of exponentially decaying [17], the
hyperparameter o, j. is set as (k+1)~1. Finally, we define the
prior distribution of D. When the distance between the main-
microphone and m-th microphone ¢,, [m] can be estimated
approximately, the time-frame-delay can also be estimated

approximately from ¢,,, as
¢m fS }

m = floor
Q " { C f shift

where C' [m/s] is the sound velocity, f; [sample/sec] is the
sampling rate, fqire [sample/frame] is the shift length of STFT,
and floor{-} is the flooring function. In addition, D,, is a
non-negative integer. Therefore, we define p(D) as a Poisson
distribution with parameter Q. calculated from ¢, as

13)

H D PG}, (14)

where ! denotes the factorlal operator.

C. Parameter estimation procedure

It is difficult to obtain the global optima analytically because
this problem is a simultaneous optimization for non-negative
continuous and integer variables agﬁg and D,,. To obtain a
local optima, we adopt an alternately repeat optimization of
a proximal gradient method for a(m) and grid-search method

for D,, as shown in Algorithm 1 . Specifically, first afd_k) is
optimized by repeating the following procedure Iie; times by
a proximal gradient method. Next, D,,, is optimized so as to
maximize J(©) by a gr1d search algorithm.

To simply calculate Va ";C J(©), we use 02 = 1 in (11).
Then, the log-likelihood function and the log prior distribution

of a are written as

) o o T ‘Xt,(ulg' 2
1np(X()|a,D,X)=ZZ—§ In N“ﬂ , (15)

w=171=1

. (16)
welm=2k=0 @k
Thus, Va‘(:fk) J(O) is calculated a
X
(m) wamTDm’k i (INTl)l) 1
Va,. J(©) = o, (D
= hpd o

where we write 127" = | X Sﬁ) D, _| due to limitations

of space. Moreover, to adjust the o, 1 in accordance with the
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amplitude-level of the observation on each microphone, we
calculate o, p = v, (k + 1)~! where

1 1 T

SE k1)t

X511
T= 1Em Q‘X(Yr;‘_ Qm7k|

Yo = (18)

Algorithm 1 Optimization for multi-delay noise model. X is
step-size of gradient method.

Input: X

Output: a,D

Initialize o) = oy, and D,, = Q..
while until algorithm convergence do

repeat
ally, < ally + AVem J(O©) for all m,w, k.
agy < maX(O,aw k) for all m,w, k.

until I, times

D, < arg max J(0©) for all m.
D,
end while

IV. EXPERIMENTS

A. Experimental condition

We conducted objective experiments and a verification ex-
periment to evaluate the performance of the proposed method
(Prop). For comparison, we used a noise reduction method
using a distributed microphone array [12] (Conv). Although
this conventional method assumes the amplitude-spectra of
noise sources are unknown we model the noise as |Nw T|
Z |A(1m HX | and estimate only transfer-function-
gain. To evaluate the validity of the multi-delay noise model
(6), the conventional method with the ground-truth of the
time-frame- delay D,, (Conv-FD) was also compared, i.e.,

) (1,m) | x-(m)
|NW77'|%Zm Z‘A HXwT Dm|

Since it is difficult to collect training/test data in a large-
scale space, the objective experiments were conducted in a
simulation environment as shown in Fig. 3. To simulate a large-
scale room, the “room impulse response (RIR) generator” [18]
was used. The parameters for the RIR simulation were as
follows: the sound velocity was 340.0 [m/s], the sampling
rate was 16 kHz, the reverberation-time (RTgy) was 1.0 [s],
the reflection order was 10, and the microphone type was
omnidirectional. Each noise group was propagated from two
loudspeakers: one emitted a vocal source, and the other emitted
a drum source. Ten pieces of music from “The Mixing Secret
Dataset 100 (MSD100)” [19] were used as the training dataset
of noise sources. As the test datasets, a Japanese speech
database consisting of 200 utterances spoken by 2 males and
2 females from the ATR Japanese speech database was used
for a target source dataset, and 6 pieces of music in MSD100
were used for noise sources. The noisy signals were formed
by mixing RIR convolved speech utterances with the RIR
convolved noises at signal-to-noise ratio (SNR) levels of -12,
-6, and 0 dB.
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Fig. 3. Arrangement of simulated microphones and sound sources. Each

(x,y, z) coordinate [m] denotes position of microphone and sound source.

The frame size of the STFT was 512 samples (= 32 ms),
and the frame was shifted by 256 samples (= 16 ms). Approx-
imated distances were set to ¢o = ¢3 =40 m (i.e., Q,, = 7).
Other parameters were defined practically as A = 1075,
K =10, and Iy = 20. The ground-truth of the time-frame-
delay was D,,, = 8.

B. Objective experiments

The proposed method was compared with the conventional
methods in terms of distant noise reduction by using three
objective measurements: the signal-to-distortion ratio (SDR),
the short-time intelligibility measure (STOI) [20], and the
perceptual evaluation of speech quality (PESQ). The “BSS-
Eval toolbox [21]” was used to calculate the SDR.

Table 1 shows the evaluation results. All scores of the
proposed method were always higher than those of the conven-
tional methods irrespective of the input SNR conditions. Since
Conv-FD, which is an instantaneous mixing model involving
ground-truth time-frame-delay D,,, has higher scores than
Conv in all measurements, it is necessary to consider time-
frame-delay in distant noise reduction. In addition, all scores
of Prop, which models the distant noise by convolutional
mixing, were higher than those of Conv-FD, which models it
by instantaneous mixing. According to these results, the pro-
posed multi-delay noise model and noise reduction framework
effectively reduced distant noise.

C. Verification experiment in real-environment

To test whether the proposed method works in a real-
environment, we tested the proposed method in a baseball
stadium. The target sources were ball hitting/catching sounds
and the umpire’s voice that came from close to the home-
base. The noise was cheering noise in left- and right-outfield
stands including cheering voice/whistle/drum noise. We placed
three microphones close to the home-base m = 1 and in both
outfield stands m = 2 and m = 3.

Fig. 4 (a) and (b) show spectrograms of XS; and XS)T, re-
spectively. As we can see in these spectrograms, a time-frame-
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TABLE I
EXPERIMENTAL RESULTS (AVERAGE £ STANDARD DEVIATION).

Method [ SDR [dB] STOI [%] PESQ
Input SNR: -12 dB
Conv —6.62 £ 2.12 42.02 £6.09 1.04 £0.55
Conv-FD | —0.80+2.24 53.81 £6.37 1.39 £0.33
Prop 2.88+2.36 60.64+6.70 1.57+0.21
Input SNR: -6 dB
Conv —0.03 +£2.15 57.98 £6.51 1.45+0.34
Conv-FD 5.40 £2.11 69.03 £6.78 1.81£0.18
Prop 7.86 + 1.98 74.31 +£7.04 2.06+0.17
Input SNR: 0 dB
Conv 6.16 + 1.52 72.97+£7.20 1.91+£0.20
Conv-FD 10.45 +£1.75 80.90 £ 7.46 2.25+0.16
Prop 11.51+£1.59 83.88+7.34 2.51+0.15
o
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Fig. 4. Spectrograms of (a) observed signal at home-base X“(, .), (b)

observed signal at left-outfield stand XE) T, (c) estimated noise N(E, -, and
(d) estimated target source SW,.,-. Each event {, ©, and & denotes cheering
voice/whistle/drum noise, catching sound, and umpire’s voice, respectively.

delay and reverberation occurred, thus instantaneous mixing
cannot be assumed. F1g 4 (c¢) and (d) show the estimated
noise Nb(ull and output SLM, respectively. The former shows
that long reverberation- and propagation-time are adjusted by
the multi-delay noise model, and the latter shows that the
distant noise is reduced. Results of this verification experiment
suggest that the proposed method effectively reduces distant
noise under practical conditions.

V. CONCLUSIONS

In this study, we proposed a framework to reduce dis-
tant noise by using a distributed microphone array. First,
we introduced distant noise by a multi-delay noise model,
to represent long reverberation- and propagation-time. Then,
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the model was extended as a probabilistic model, and its
parameters were estimated on the basis of the maximum a
posterior (MAP) estimation. Experimental results showed that
the proposed method outperformed conventional methods in
several performance measurements and could reduce distant
noise propagated from more than 100 m away in a real-
environment. Thus, it can be concluded that the proposed
method is effective for distant noise reduction.
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