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Abstract—This paper deals with an extension of Papoulis’
generalized sampling expansion (GSE) to a case where noise is
added before sampling and the total sampling rate may be higher
than the Nyquist rate. We look for the best sampling scheme that
maximizes the capacity of the sampled channel between the input
signal and the M sampled outputs signals, where the channels are
composed of all-pass linear time-invariant (LTI) systems with
additive Gaussian white noise. For the case where the total rate
is between M-1 and M times the Nyquist rate, the optimal scheme
samples M-1 outputs at Nyquist rate and the last output at the
remaining rate. When M = 2 the optimal performance can also
be attained by an equally sampled scheme under some condition
on the LTI systems. Surprisingly, equal sampling is suboptimal in
general. Nevertheless, for some total sampling rates where there
is an integer relation between the number of channels and the
total rate, a uniform sampling achieves the optimal performance.
Finally, we discuss the relation between maximizing the capacity
and minimizing the mean-square error.

I. INTRODUCTION

In [1], [2], Papoulis introduced the generalized sampling
expansion (GSE) showing that a band-limited signal x(t) of
finite power that passes through M linear time-invariant (LTI)
systems and generating responses {gk(t)}Mk=1, can uniquely be
reconstructed, under some conditions on the M LTI systems,
from samples of the output signals gk(nT), at 1/M the Nyquist
rate. The vector sampling expansion (VSE), introduced in [3],
[4], extends the GSE to multi-input-multi-output (MIMO) LTI
systems where L input signals generate M output signals, and
if M/L is integer the input signals can be reconstructed from
samples of the output at L/M the Nyquist rate. The GSE is a
special case of the VSE where L = 1.

This work provides another extension to the GSE where
noise is added after the LTI systems.The total sampling rate
can be higher than the Nyquist rate (to combat the noise),
and each output signal may be sampled at a different rate. A
similar extension of the VSE is left for further work.

The criterion we suggest for choosing the best sampling
scheme for a given M LTI system and a total sampling rate f
is the maximal capacity representing the maximal information
rate that can be achieved over the resulted sampled channel.
For this, we assume that the additive noise is white and
Gaussian. As will be seen, sampling the output signals will
generate a non-white aliased noise; nevertheless, at high SNR,
we came up with an explicit formula for the capacity of the

sampled channel which is valid for any sampling scheme. This
formula is utilized to establish the optimal sampling scheme.

The paper is organized as follows: In Section II, we present a
time and frequency domain settings. In Section III, we develop
the capacity equations. In Section IV, we provide the structure
of the matrix whose determinant defines the capacity, and
provide an upper-bound for that determinant. In Section V, we
give a detailed analysis for the case of M outputs and show the
sampling scheme that maximizes the capacity. In Section VI,
we discuss the uniform sampling scheme. Finally, we provide
conclusions and further work in Section VII.

II. THE MODEL

In our model, we have a band-limited signal x(t) with
bandwidth B, with finite power.

x(t) =
1

2π

∫ B/2

−B/2
X (ω) e jωtdω,

E

[
lim
T→∞

1
T

∫ T/2

−T/2
x2(t)dt

]
≤ Px < ∞

(1)

where E[·] is the expectation and Px is the signal power.

A. Time Domain Model
The input signal first passes through M LTI systems with

impulse response {hm(t)}Mm=1, which are perfectly known.
Then i.i.d Additive-White-Gaussian-Noise (AWGN) is added
and finally the M output signals are sampled at rate 1/Tm,
generating the output signals ym(nTm), as can be seen in Fig.
1.

y (t) =


y1(t) = (x ∗ h1)(t) + n1(t)

...
yM (t) = (x ∗ hM )(t) + nM (t)

(2)

where ∗ is the convolution operator and {nm(t)}Mm=1 are band-
limited white Gaussian with power spectrum Nm(ω) = N0,
where ω ∈ [−B, B].

Rate assumptions: We assume that each of the M output
signals can be sampled up to the Nyquist rate and that the total
sampling rate f is between the Nyquist rate and M times the
Nyquist rate:

fNyq ≤ f =
M∑
m=1

fm ≤ M fNyq . (3)
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+
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Figure 1: Sampling Scheme

If the total rate equals the Nyquist rate we have a similar
model to Papoulis’ GSE model, except for the noise. If the
total rate is M times the Nyquist rate we sample each output
signal at the Nyquist rate. In this paper, we will use normalized
sampling rates:

r = f / fNyq, rm = fm/ fNyq => 1 ≤ r =
M∑
m=1

rm ≤ M . (4)

B. Frequency Domain Model

After defining the time-domain model, we consider the
frequency domain model, using the notations from [5]. Let T
be the smallest common denominator of the sampling times,
[TNyq, {Tm}

M
m=1] ∈ R, such that:

LTNyq = T, pmTm = T, L, {pm}Mm=1 ∈ N. (5)

Since TNyq = 1, then pm = rmL. First, we define the vector-
valued function d(e jω) of length L, whose kth element is given
by

dk(e jω) =
1
T

X
(ω

T
+

2πk
T

)
, 0 ≤ ω ≤ 2π (6)

where X(ω) is the discrete-time Fourier transform (DTFT) of
x[n]. Next, we define cm[n]:

cm[n] = ym(nT) = (x ∗ hm)[n] + nm[n] (7)

where [·] represent discrete time. c(e jω) is the output DTFT
vector of length rL of the output signals {ym}Mm=1, structured
as follows:

c(e jω) =


C1(e jω)

C2(e jω)
...

CM (e jω)


, Cm(e jω) =


Cm1(e jω)

Cm2(e jω)
...

Cmpm (e
jω)


. (8)

where the DTFT of the samples , {Cmk(e jω)}
pm

k=1 is:

Cmk(e jω) = Cm(e j ω+2πk
T )

(a)
=

1
T

∑
l∈Z

Ym

(
ω + 2πk

T
+

2πl
T

)
(b)
=

1
T

∑
l∈Z

X
(
ω

T
+

2π(l + k)
T

)
Hm

(
ω

T
+

2π(l + k)
T

)
+ Nm

(
ω

T
+

2π(l + k)
T

)
=

1
T

∑
l∈Z

X
(

ω

pmTm
+

2π(l + k)
pmTm

)
Hm

(
ω

pmTm
+

2π(l + k)
pmTm

)
+ Nm

(
ω

pmTm
+

2π(l + k)
pmTm

)
(c)
=

1
T

∑
(l+k)
pm
∈Z

X
(
ω

L
+

2π(l + k)
L

)
Hm

(
ω

L
+

2π(l + k)
L

)
+ Nm

(
ω

L
+

2π(l + k)
L

)
(d)
=

1
T

L−1∑
l=0

(l+k)
pm
∈Z

X
(
ω

L
+

2π(l + k)
L

)
Hm

(
ω

L
+

2π(l + k)
L

)

+ Nm

(
ω

L
+

2π(l + k)
L

)

(9)

where,
(a) Following Theorem 3.2 of [5]
(b) Definition of ym(t)
(c) Only the relevant duplications are taken according to the

ratio k/pm
(d) Y (ω) is band-limited to 2π/TNyq and T = LTNyq

and where, Ym(ω), Hm(ω), Nm(e jω) are the DTFT of
ym[n], hm[n], nm[n], respectively.

H(ω) is the DTFT matrix describing the channel response
of size ML × L with the following elements:

H(ω) =


H1(ω)
H2(ω)
...

HM (ω)


,

Hm(ω) = diag
{
Hm

(ω
T
+

2πk
T

)}
L

, 0 ≤ k ≤ L − 1

(10)

where diag{·}L is a square diagonal matrix of size L. We
assume that {Hm(ω)}

M
m=1 (10), are allpass filters, meaning that

{Hm(ω)}
M
m=1 are unitary matrices:

HH
m (ω)Hm(ω) = IL, ∀ω. (11)

The choice of {Hm(ω)}
M
m=1 to be allpass filters makes sense,

since in our problem we try to determine how to allocate
samples between the channels, amplifying one of the channels
will give that channel an unfair advantage. A is a matrix of
size rL×ML where {Am}

M
m=1 are the channel aliasing matrices
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composed of zeros and ones and depend on {rm}Mm=1, of size
rmL × L:

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · AM


(12)

N(e jω) is the DTFT of AWGN vector of length ML distributed
N(0, N0 · IML) and its elements are:

N(e jω) =


N1(e jω)

N2(e jω)
...

NM (e jω)


, Nm(e jω) =


Nm1(e jω)

Nm2(e jω)
...

NmL(e jω)


. (13)

Finally, the DTFT equation model is:

c(e jω) = AH(ω)d(e jω)+AN(e jω) = Gωd(e jω)+Nc(e jω) (14)

where, Gω = G(ω) is the channel matrix.

III. CAPACITY CALCULATION - WATER-FILLING FORMULA

Next, our goal is to find the sampling scheme that achieves
maximum capacity. The capacity of a general vector channel
is given by Telatar [6], using the water-filling equations [7]. In
order to use the water-filling formula in [6], the model noise
should be AWGN. Thus we need to whiten the noise in (14).

A. Noise Whitening

First let’s calculate the rL×rL covariance matrix of Nc(ω):

σ2
c = E[Nc(ω)NH

c (ω)] = A · E[NωNH
ω ] · A

H = N0AAH (15)

where (·)H is the conjugate transpose operator. In order to
whiten the noise, we will multiply the noise with the whitening
matrix (N0AAH )−0.5.

E[(N0AAH )−0.5Nc(ω)] = (N0AAH )−0.5E[Nc(ω)] = 0,
E[(N0AAH )−0.5Nc(ω)Nc(ω)

H (N0AAH )−0.5H ]

= (N0AAH )−0.5N0AAH (N0AAH )−0.5

= (AAH )−0.5(AAH )0.5(AAH )0.5(AAH )−0.5 = IrL

(16)

Next, the model (14) is multiplied with the whitening matrix
to get a new model with white noise:

c̃(e jω) = G̃ωd(e jω) + Ñ(e jω) (17)

where, c̃(e jω) = (N0AAH )−0.5c(e jω),
G̃ω = (N0AAH )−0.5AH(ω), Ñ(e jω) = (N0AAH )−0.5AN(e jω).

B. Water-filling formula

The water-filling equations are:

P(µ) =
1

2π

∫ 2π

0

∑
l

(
µ − λ−1

lω

)+dω,

C(µ) =
1

2π

∫ 2π

0

∑
l

(
ln

(
µλlω

) )+dω
(18)

where µ is the water-filling level such that P(µ) = Px , (g)+ =
max(g, 0), and λ−0.5

l
are the eigenvalues of matrix G̃ω . In our

problem we normalize the water-filling equations with L (5):

P(µ) =
1

2πL

∫ 2π

0

∑
l

(
µ − λ−1

lω

)+dω,

C(µ) =
1

2πL

∫ 2π

0

∑
l

(
ln

(
µλlω

) )+dω.
(19)

We use the normalized equations since for different sampling
scheme, L is different. Then the spectrum is divided into
different parts number without increasing the spectrum sup-
port. While the total capacity does not increase, it is divided
through different spectrum parts number. To simplify the
calculations, we will find the eigenvalues of matrix G̃H

ω G̃ω =

N−1
0 HH (ω)AH (AAH )−1AH(ω). Our solution is for high Signal

to Noise Ratio (SNR) cases. In that case, µ is large enough
(larger than λ−1

lω
), so the water-filling formulas can be written

as:

P(µ) =
∫ 2π

0

∑
l
(µ − λ−1

lω
)+

2πL
dω ≈

∫ 2π

0

∑
l
(µ − λ−1

lω
)

2πL
dω =>

µ = P +
1

2πL

∫ 2π

0
tr

(
(G̃H

ω G̃ω)
−1)dω (20)

C(µ) =
∫ 2π

0

∑
l

(
ln

(
µλlω

) )+
2πL

dω ≈
∫ 2π

0

∑
l

(
ln

(
µλlω

) )
2πL

dω =>

C(µ) ≈ K +
1

2πL

∫ 2π

0
ln

(
det

(
G̃H
ω G̃ω

) )
dω (21)

where K = ln(µ) is a constant, tr(·) is the trace function, and
the approximation is due to high SNR. High SNR causes the
water-level to be high, then all the eigenvalues are considered
and the water-level is constant. Thus, to maximize the capacity
at high SNR, we need the maximize G̃H

ω G̃ω determinant.

IV. G̃H
ω G̃ω PROPERTIES

Equations (10) and (12) provide the components of G̃H
ω G̃ω

matrix. With direct calculation we get that:

G̃H
ω G̃ω = N−1

0

M∑
m=1

HH
m (ω)A

H
m (AmAH

m )
−1AmHm(ω) (22)

It is easy to see that {HH
m (ω)A

H
m (AmAH

m )
−1AmHm(ω)}

M
m=1

are projection matrices, using (11) assumption. Thus G̃H
ω G̃ω

is a summation of projection matrices, and so its normalized
trace is constant:

tr(G̃H
ω G̃ω)

L
=

M∑
m=1

tr(HH
mωAH

m (AmAH
m )
−1AmHmω)

LN0

=
1

LN0

M∑
m=1

rank(Am) =
1

LN0

M∑
m=1

rmL = N−1
0 r

(23)
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As can be seen from (23), the normalized trace is con-
stant and does not depend on the sampling scheme. Since,
{Hm(ω)

HAH
m (AmAH

m )
−1AmHm(ω)}

M
m=1 are projection matri-

ces, each one has rmL eigenvalues that are equal to 1 and
(1−rm)L that are equal to 0. Therefore, their rank is rmL. The
arithmetic-geometric mean inequality and the normalized trace
property (23) provide an upper-bound for the determinant and
therefore, an upper-bound to the capacity as well:

det
(
G̃H
ω G̃ω

)
≤ N−1

0 rL . (24)

V. BEST SAMPLING SCHEME

Here we present the optimal sampling scheme that provides
the maximal capacity for the case when the input signal passes
through M LTI systems and the total sampling rate satisfies:

M − 1 ≤ r ≤ M . (25)

First, we find the sampling scheme that maximize the upper-
bound on the capacity and then we show that they are equal:

max∑M
m=1 rm=r

C(µ) = max∑M
m=1 rm=r

∫ 2π

0

ln
(
det

(
G̃H
ω G̃ω

) )
2πL

dω

≤
1

2πL

∫ 2π

0
max∑M

m=1 rm=r
ln

(
det

(
G̃H
ω G̃ω

) )
dω

(26)

If max∑M
m=1 rm=r

det
(
G̃H
ω G̃ω

)
, f (ω), then the inequality becomes

equality. As shown in the following theorem and the discussion
that follows, for the case of (25), the best sampling scheme,
for all-pass Hm’s, will be:

{rm}M−1
m=1 = 1, rM = r − (M − 1). (27)

Theorem 1. Let {Pm}
M
m=1 be L × L projection matrices with

ranks rmL, 1 ≤ m ≤ M, respectively and where

{rm}Mm=1 ≤ 1, r =
M∑
m=1

rm,

M − 1 ≤ r ≤ M, rmL ∈ N 1 ≤ m ≤ M

(28)

Let H be a L × L full rank matrix summation of {Pm}
M
m=1:

H =
M∑
m=1

Pm. (29)

Then H has a least
(
r − (M − 1)

)
L eigenvalues with value M.

Proof. Let {rm}Mm=1 have restrictions as in (28). Let V be a
vector space with dimension L and {Vm}

M
m=1 be subspaces of

V . Let {Pm}
M
m=1 be L× L projection matrices to the subspaces

{Vm}
M
m=1 with dimensions rmL 1 ≤ m ≤ M , respectively.

Each Pm has rmL eigenvectors that spans the subspace Vm

with eigenvalue 1, per projection matrix properties. First we
show that the dimension of the subspace V1 ∩V2 ∩ · · · ∩VM is
at least

(
r − (M − 1)

)
L when M − 1 ≤ r ≤ M . This follows by

induction. Proof for the M = 2 case:

dim(V1∩V2) = dim(V1)+dim(V2)−dim(V1∪V2) ≥ (r−1)L (30)

Next assume that statement is correct for M − 1:

dim(V1 ∩ V2 ∩ · · · ∩ VM−1) ≥
(
r − (M − 2)

)
N (31)

It follows then:

dim(V1 ∩ V2 ∩ · · · ∩ VM ) = dim(VM )

+ dim(V1 ∩ V2 ∩ · · · ∩ VM−1)

− dim({V1 ∩ V2 ∩ · · · ∩ VM−1} ∪ VM )

≥ rM L +
(
r − rM − (M − 2)

)
L

− dim({V1 ∩ V2 ∩ · · · ∩ VM−1} ∪ VM )

≥
(
r − (M − 2)

)
L − L =

(
r − (M − 1)

)
L

(32)

where the first inequality is due to the induction assumption.
That is, the statement is true for M .

Let the set {vi}
(
r−(M−1)

)
L

i=1 be joint eigenvectors of matrices
{Pm}

M
m=1, that spans the subspace V1∩V2∩· · ·∩VM . Let H be as

in (29). Now we can show that {vi}
(
r−(M−1)

)
L

i=1 are eigenvectors
of H as well with the eigenvalue M:

Hvi =
M∑
m=1

Pmvi =
M∑
m=1

λmvi = Mvi = λvi (33)

The eigenvalues of the set {vi}
(
r−(M−1)

)
L

i=1 are {λm}Mm=1 = 1.
That conclude the proof, that H has at least

(
r − (M − 1)

)
L

eigenvalues with value M when M − 1 ≤ r ≤ M .

Using Theorem 1, we know that G̃H
ω G̃ω has at least

(
r −

(M − 1)
)
L eigenvalues with the value M . The other (M − r)L

eigenvalues have a constant summation by the normalized trace
property of G̃H

ω G̃ω (23):

tr
(
G̃H
ω G̃ω

)
L

=
r

N0
= N−1

0
( (

r−(M−1)
)
M+(M−r)(M−1)

)
(34)

Then, if we can maximize the product of the other (M −
r)L eigenvalues, we are maximizing the determinant. The
arithmetic-geometric mean inequality,

M − 1 =
λ1 + λ2 + · · · + λ(M−r)L

(M − r)L
≥ (M−r )L

√
λ1 · λ2 · · · λ(M−r)L

(35)

with an equality, i.e. maximizes the determinant, when λ1 =
λ2 = · · · = λ(M−r)L = M−1. This case occurs when we sample
as in (27), regardless of the LTI systems. The determinant in
this case will be:

det
(
G̃H
ω G̃ω

)
= N−1

0 MrM L(M − 1)(1−rM )L

= N−1
0 M

(
r−(M−1)

)
L(M − 1)(M−r)L

(36)

Since the determinant is not dependent on ω (26) becomes
an equality, and this sampling scheme maximizes the capacity.
The best sampling scheme reaches the upper-bound (24), when
the total normalized sampling rate is r = {M − 1, M}.

Unfortunately, we do not know the optimal scheme for the
case where the total normalized sampling rate is lower than
M −1. It turns out that the techniques used to find the optimal
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sampling when the rate is (25), do not apply and it requires
to calculate the determinant of a summation of matrices
HH

m (ω)A
H
m (AmAH

m )
−1AmHm(ω). Each of those matrices has

non-zero elements on some of the matrix diagonals, where
the location of those elements and the number of diagonals
are determined by the sampling rates. For example, when
one of the sampling rates is higher than half of the Nyquist
rate, rm ≥ 1/2, the matrix has three diagonals with non-zero
elements - the main diagonal and two secondary diagonals.
The location of the secondary diagonals is very sensitive to a
variation in rm value. Then for every change of rm different
techniques are required to calculate the determinant.

VI. UNIFORM SAMPLING SCHEME

An interesting sampling scheme that was expected to be the
best sampling scheme is the uniform scheme, similar to the
GSE and VSE, i.e.:

{rm}Mm=1 =
r
M
. (37)

The maximal determinant for this case was shown in [8]:

max
rm=r/M

det(G̃H
ω G̃ω) = N−1

0

( M
df

)L ( df

df + 1

) (d f +1)dp

. (38)

where df = bM/rc and dp = (1 − rdf /M)L. The maximum
is achieved when

∑M
m=1 Hm(ω) = 0. When the Hm’s are

pure delay systems, this condition makes the entire sampling
uniform, in standard sampling - uniform sampling is known
to be the best. When M = 2 (36) and (38) are equal, while
this scheme provides another sampling scheme that achieves
the maximal determinant (for M = 2 case), it is very sensitive
to changes of Hm’s, unlike the best sampling scheme. For
the cases where M > 2, the maximal capacity that can be
achieved in this sampling scheme is suboptimal to (27). When
the relation between the number of channels and rate is:

M
r
∈ N (39)

The uniform sampling scheme achieves the upper-bound (24).
For those rates, it is the best sampling scheme. Notice that this
relation also valid when r ≤ M − 1. In the previous results,
the best sampling scheme was the scheme that maximized the
capacity for a given rate and number of channels. This result
provides the optimal sampling scheme without the channels
number constrain. This is an important result since it allows
to construct a sampling scheme that achieves the maximal
performance.

VII. CONCLUSION

In this paper we analyzed the best sampling scheme, in
the sense of maximizing the capacity, for the scenario where
a band-limited signal passes through M LTI systems and
sampled at a constant total rate. In the case where M − 1 ≤
r ≤ M we found the best sampling scheme in which M − 1
outputs are sampled at the Nyquist rate and the last output is
sampled at the remaining rate. In addition, we showed that for
M = 2 and for systems that fulfill

∑2
m=1 Hm(ω) = 0 condition,

there is another optimal solution where the sampling rates are
equal. Surprisingly, when M > 2 with systems that satisfies
similar condition, an equally sampled scheme turned out to
be suboptimal. Nevertheless, a sampling scheme in which the
output signals are sampled equally, is shown to be optimal for
some numbers of output signals and total sampling rates.

The criterion we used in this paper is maximum capacity,
with high SNR assumption. Another optional criterion is to
minimize the mean-square-error (MSE) of a Least-Square (LS)
estimator. We were able to show [8] that for the case where M−
1 ≤ r ≤ M , minimizing this MSE is equivalent to maximizing
the capacity. The proof is omitted here for lack of space.

Interestingly, although this problem seems simple, it turned
out to be quite challenging. There are still quite a few open
challenges in this problem. To mention a few:
• What is the optimal scheme when the total sampling rate

is 1 ≤ r ≤ M − 1 and M > 2?
• Extending the results to the Vector Sampling Expansion

case (VSE), i.e., when there are L > 1 input band-limited
signals.

• Relating the capacity criterion to the MMSE criterion in
general. Also, finding solution for any SNR.

• What happens when the noise is not Gaussian?
These questions and some more are left for further research.
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