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Abstract— In this paper, we propose a novel method for em-
bedding one-dimensional, periodic time-series data into higher-
dimensional topological spaces to support robust recovery of
signal features via topological data analysis under noisy sam-
pling conditions. Our method can be considered an extension
of the popular time delay embedding method to a larger class
of linear operators. To provide evidence for the viability of
this method, we analyze the simple case of sinusoidal data in
three steps. First, we discuss some of the drawbacks of the
time delay embedding framework in the context of periodic,
sinusoidal data. Next, we show analytically that using the
Hilbert transform as an alternative embedding function for
sinusoidal data overcomes these drawbacks. Finally, we provide
empirical evidence of the viability of the Hilbert transform as
an embedding function when the parameters of the sinusoidal
data vary over time.

I. INTRODUCTION
Topological data analysis (TDA) is an emerging field of

study which argues that many powerful insights about data
come from the way the data points are structured with respect
to each other: that is, the “shape” of the data is important
[1]. The flagship tool of TDA is persistent homology (PH),
which examines point clouds of data embedded into high-
dimensional topological space in order to find regions of
the space where n-dimensional “holes” exist [2]. As such,
TDA is well-suited to analyzing data sets which are high-
dimensional, i.e., each data “point” results from multiple
measurements of a single sample. TDA has been used to
uncover surprising insights in many different applications,
and active research continues into the applicability of TDA
to various classes of data problems [3][4][7].

While TDA is naturally suited to analyzing data which
possesses an inherently high dimensionality, there has also
been an interest in determining whether these topological
techniques can also reveal insights about data taken from
low-dimensional measurements, such as scalar time-series
data. One immediate problem in investigating this question
is that it is not obvious how scalar time-series data could
be transformed into a higher-dimensional point cloud. Time
delay embeddings (TDEs) provide one possible solution,
and have been applied by multiple authors to real-world
problems including wheeze detection in mobile devices [3],
and discovering periodicity in gene expression data [4].

In this paper, we propose a novel method for performing
this data transformation which extends the method of TDEs
to other linear operators. The objective of this new method is
to improve the robustness of TDA methods and tools (such
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as those provided in [3][4][5]) in the presence of degrading
noise, measurement imperfection, and nonstationarity of the
signal parameters.

The remainder of the paper is organized as follows: a
brief overview of TDEs and the TDA framework is provided
in Section II. In Section III, some drawbacks of the TDE
method for sinusoidal signals are illustrated. In Section IV,
we present our novel method as an extension of TDE method.
In Section V, we show how to use this method to find
a superior embedding function for sinusoidal signals. This
embedding function is tested against noisy data simulating
common communication signals with results presented in
Section VI. Finally, conclusions and recommendations for
future work are presented in Section VII.

II. SUMMARY OF TIME DELAY EMBEDDINGS AND
TOPOLOGICAL DATA ANALYSIS

The method of using TDEs to transform scalar time-
series data into a higher-dimensional point cloud can be
summarized from [3] and [4] as follows. Given a discrete
scalar time-series x[k], form the multidimensional vector
X[k] according to

X[k] = (x1[k], ..., xm[k]), X[k] ∈ Rm, (1)

where each xi[k] = x[k + (i − 1)j] (i = 1, ...,m), j is a
constant number of samples (the delay parameter) and m is
the embedding dimension. Since the data points of X[k] are
also time-ordered, this point cloud can be further interpreted
as samples taken from a continuous, parametric path through
the m-dimensional space. As discussed in [5], points in space
at which the path returns to itself create topological circles,
hereafter referred to as cycles. Computing the 1-D homology
of the continuous path would reveal the existence of these
cycles, which in turn would inform further data analysis
efforts. However, since the point cloud is a discrete sampling
of this path, the homology of the point cloud may differ
from the true homology of the path based on the assumed
resolution at which the sampling was performed [2].

The TDA framework using PH overcomes the issue of
discretely sampled points through the concept of persistence.
When provided a point cloud of high-dimensional data, the
PH algorithm iteratively computes and stores the homology
of the data set by assuming increasing sampling resolutions
at each step, up to a defined limit [1]. When computed in this
way, each topological feature is said to be “born” at some
smaller resolution and “die” at a larger resolution [1]. The
persistence of a given feature is the length of the interval
between birth and death. The final output of the algorithm is
a description of the persistence of all homological features
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Fig. 1. Top Row: Lissajous ovals from a sinusoidal TDE at various phase delays. The blue oval is provided as an ideal reference for the case of dense,
noiseless sampling. The red markers are provided as an example of noisy sampling (100 samples/period for 10 periods with AWGN at 12 dB SNR).
Bottom Row: Barcodes corresponding to the 1-D persistent homology of each noisy plot in the top row, ignoring the blue ovals. The length of the longest
line segment provides a measure of the size of the primary void in the associated oval. Persistent homology was computed via JavaPlex [10].

of the point cloud over all computed resolutions, and is
often provided visually in the form of a barcode graph.
The theory of PH argues that persistent features (i.e., those
existing over a large resolution range) imply an underlying
structure to the data, whereas transient features (i.e., those
existing only over a small resolution range) are likely due
to noisy imperfections in measurement and/or side effects of
the computational procedure [1].

III. DRAWBACKS OF TIME DELAY EMBEDDINGS FOR
SINUSOIDAL SIGNALS

The use of TDEs is justified mathematically by a theorem
proven by Takens [6], in which Takens demonstrates that
for a sufficiently large m, almost every choice of delay
parameter j would allow for detection of any existing cycles,
provided there are an infinite number of noiseless data
points available. In real-world signals, however, data is both
noisy and finite. These properties blur and discretize the
path taken through the m-dimensional space, potentially
obscuring meaningful cycles and/or inducing false cycles
depending on the assumed resolution of the sampling. As
a result, only a select few choices of j may actually provide
valid results under noisy sampling. A primary difficulty with
using TDEs is predicting what these valid choices of j are
when the parameters of the underlying signal or system are
unknown. In this section, we examine several factors which
contribute to this problem.

A. Compression of a Topological Circle to a Line

A poor choice of the delay parameter j can compress
the embedding of a periodic signal to a single line in the
topological space [3], which would have trivial homology.
To demonstrate this, consider the case of a discrete periodic
signal whose samples are taken from an analog sinusoidal

function of the form x(t) = A cos(2πft), with A and f
both nonzero. Constructing a TDE of this discrete signal
is equivalent to sampling y(t) = x(t + ∆t), where y(t)
is a time-delayed version of the original analog signal.
Simplifying y(t) gives

y(t) = A cos(2πf(t+ ∆t),

y(t) = A cos(2πft+ 2πf∆t),

y(t) = A cos(2πft+ φ); φ = 2πf∆t. (2)

As shown, y(t) is simply a phase-shifted version of x(t),
with the amount of phase shift determined jointly by the
frequency of the original signal and the chosen time delay.
Plotting the analog signals x(t) and y(t) as a parametric
equation in R2 produces a special case of a Lissajous curve:
an oval whose eccentricity, ε, is determined exclusively by
the phase shift [9]. For phase shifts of 0 ± nπ (n ∈ Z)
radians, the oval is compressed to a single line (ε = 1). For
phase shifts of π

2 ± nπ (n ∈ Z), the oval becomes a circle
(ε = 0), and encloses the maximum possible area among all
possible phase values. The effect of sampling x(t) and y(t) is
a discretization of the analog path, possibly including noise.
This effect is shown in the top row of Fig. 1 for multiple
phase delays in both the ideal and noisy sampling cases.

B. Effects of Noisy Sampling

The 1-D barcode corresponding to each case of phase
delay is given in the second row of Fig. 1. Compared with
the theoretical ideal of a single line persisting throughout
the entire interval, it is easy to see that an increasing ε
corresponds to decreasing performance in detecting the cycle.
Additionally, one can observe that as ε → 1, the embedded
data points (red markers in Fig. 1) cluster toward the vertices
of the semi-major axis of the ellipse. This reduces the
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effectiveness of density clustering techniques to de-noise the
data, as the density around the cycle is no longer uniform.
Note, however, that this effect is not present when ε = 0.

C. Effects of Nonstationarity in the Sinusoid Parameters

The examples shown in Fig. 1 assumed a sinusoid of
constant amplitude, frequency, and phase throughout the
measurement interval. However, many real signals of interest
(e.g., amplitude/frequency/phase-shift keying) routinely alter
these parameters to encode information. Using too long of
a delay parameter such that data from disparate intervals
are used to create the parametric path is unlikely to have
relevant physical meaning since the intervals are generally
uncorrelated [8]. Additionally, the frequency even within a
given interval could vary due to, for example, sampling time
jitter in the measurement equipment or the Doppler effect (in
the case of mobile measurement equipment). Available space
does not permit in-depth analysis of these effects here, but
it should be noted that such nonstationarity in the sampled
sinusoidal signal generally results in greater difficulty in
selecting a proper delay parameter and/or decreased cycle
detectability in the PH analysis [3].

IV. PROPOSED EMBEDDING FRAMEWORK

A. Reformulation of Time Delay Embeddings

Each xi[k] element in X[k] from (1) is a time-delayed
version of the original input data x[k]. This relationship can
be expressed as

xi[k] = x[k + (i− 1)j] = x[k] ∗ δ[k + (i− 1)j], (3)

where i, j, and k have the same meaning as in (1), the ‘∗’
operator denotes convolution, and δ[k] is the unit impulse
function (i.e., Kronecker delta function δ0,k). Assuming
x[k] = x(k · Ts), where Ts is the sampling period, then
xi[k] = xi(k · Ts), where

xi(t) = x(t) ∗ δ(t+ (i− 1)j · Ts), (4)

and δ(t) is the Dirac delta function. As a result, each xi[k]
in a TDE can be considered either as the sampled output
of a continuous linear system whose input is the original
analog signal, or as the output of a discrete linear system
whose input is the original time-series data. In each case,
the impulse response of the linear system is the appropriate
time-delayed delta function.

B. Extension to Other Impulse Responses

We propose extending the impulse responses of (3) and (4)
to more complex functions of the input vector. Thus, each
xi[k] in the multidimensional vector X[k] is constructed as

xi[k] = x[k] ∗ hi[k], (5)

for some set of discrete impulse responses, hi[k], or in an
equivalent continuous case as

xi[k] = xi(k · Ts), (6)

xi(t) = x(t) ∗ hi(t) =

∫ ∞
−∞

x(τ)hi(t− τ)dτ, (7)

for some set of continuous impulse responses, hi(t).
Analogous to the concept of a matched filter in classical

signal processing, this may allow one to find and implement
an optimal embedding function to maximize the recoverabil-
ity of various topological features. We note that the definition
of optimal will generally be context-specific for the data
being analyzed, and in practice may involve a trade-off
between different parameters to ensure robustness.

V. OPTIMIZING PERSISTENCE INTERVALS FOR
SINGLE FREQUENCY SINUSOIDS

To provide a simple, constructive example of the ap-
plicability of this method to signal analysis problems, we
analyze the case where it is known a priori that the input
signal of interest is a stationary sinusoid with no DC offset.
Furthermore, we assume that we have no knowledge of the
parameters of the sinusoid. These assumptions allow the
method to be contrasted to the TDE discussion in Section III.
We begin by recalling that a sinusoid can be considered as a
projection of 2-D circular motion onto a single axis, and that
the objective is to recover this circular motion topologically.
Therefore, the minimum required embedding dimension is
two. Since minimizing the number of additional dimensions
reduces computational burden and memory requirements in a
persistence calculation, this minimum embedding dimension
is also the desired maximum. Thus, we seek one embedding
function which, when combined with the original signal,
forms a topological circle in R2.

As discussed in Section III, the TDE which produces the
longest persistence interval for noisy sinusoidal data occurs
when the associated phase delay is π

2 ± nπ (n ∈ Z), which
corresponds to a geometric circle in the plane. We can
convert this observation into a constraint on the embedding
function by requiring the parametric path produced between
the input and output vectors to always trace such a geometric
circle, regardless of the parameters of the input signal.
Considering the input signal as x(t), the output signal as
y(t), and the embedding function as h(t), the problem of
finding the necessary embedding function can be written as
follows:

Problem: Given x(t) = A cos(2πft) (f > 0), find a
function, h(t), that satisfies

x2(t) + y2(t) = A2, ∀t, (8)

where

y(t) = x(t) ∗ h(t) =

∫ ∞
−∞

x(τ)h(t− τ)dτ. (9)

This follows immediately from combining (7) with the
equation of a circle in the Cartesian plane. We now show
analytically that the Hilbert transform (HT) provides one
such solution. First, we note that the definition of the HT
can be written as a convolution of x(t) with a tempered
distribution

Hilb(x(t)) = x(t) ∗ h(t) ≡ 1

π
p.v.

∫ ∞
−∞

x(τ)

(t− τ)
dτ, (10)
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where p.v. denotes principle value. Next, we record the well-
known Fourier transform of this expression to obtain the
frequency response of the embedding function, H(f), from

F [Hilb(x(t))] = H(f) ·X(f) = (−i sgn(f)) ·X(f), (11)

where X(f) is the Fourier transform of x(t), and sgn(f)
denotes the signum function. Next, we expand the integral
equation for y(t) by using the commutative property of
convolution, substituting the cosine expression for x(t), and
applying Euler’s formula to obtain

y(t) =

∫ ∞
−∞

A cos(2πf(t− τ))h(τ)dτ, (12)

y(t) =

∫ ∞
−∞

A

2

[
e2πif(t−τ) + e−2πif(t−τ)

]
h(τ)dτ, (13)

y(t) =
A

2
e2πift

∫ ∞
−∞

h(τ)e−2πifτdτ

+
A

2
e−2πift

∫ ∞
−∞

h(τ)e−2πi(−f)τdτ. (14)

Note that the two integrals are both of the form of a Fourier
transform, and so this equation can be rewritten as

y(t) =
A

2
e2πiftH(f) +

A

2
e−2πiftH(−f). (15)

Since H(f) is an odd function, H(−f) = −H(f) =
i sgn(f). Substituting in for H(f) and H(−f) appropriately
into the equation above and simplifying yields

y(t) = A

[
e2πift − e−2πift

2i

]
sgn(f), (16)

y(t) = A sin(2πtf) sgn(f). (17)

Finally, we note that sgn2(f) = 1 for (f 6= 0), and so

x2(t) + y2(t) =A2 cos2(2πft)

+A2 sin2(2πft) sgn2(f), (18)

x2(t) + y2(t) =A2, ∀t, (19)

which matches the problem constraint, (8). Therefore, the
HT is an embedding function which unfolds a sinusoid of
amplitude A into a geometric circle of radius A in R2,
regardless of the frequency of the sinusoid.

VI. EXPERIMENTAL RESULTS

A. Stationary Sinuosoid

To validate robustness in the presence of noisy sampling, a
sinusoid with constant amplitude, frequency, and phase was
generated in MATLAB. Identical to the TDE case of Fig. 1,
the sinusoid was sampled at a rate of 100 samples per period,
for 10 periods, in the presence of additive white Gaussian
noise (AWGN) at a measured signal-to-noise ratio (SNR) of
12 dB. The plot of the 2-D embedding and corresponding 1-
D persistence barcode is provided in Fig. 2. As can be seen,
the result is very similar to the Fig. 1 plot corresponding to
a phase shift of π

2 , as expected.

Fig. 2. Left: Phase plot of stationary sinusoid embedded via the HT.
Right: Barcode corresponding to the 1-D persistent homology of left plot.

B. Nonstationary Sinusoid

To demonstrate the viability of the HT as an embedding
function in the presence of nonstationarity, three represen-
tative waveforms modeling those commonly used in radar
and wireless signaling were generated via MATLAB. These
include a quadratic chirp (or frequency-swept signal), a
quadrature phase-shift keyed (QPSK) signal, and a multi-
level frequency-shift keyed (MFSK) signal. The time-series
data for the waveforms were constructed by assuming a
sampling rate of 1000 samples per second for 6 seconds, with
a uniformly-random, noncompounding timing jitter within
±1%. All three waveforms were further degraded by AWGN
at a measured SNR of 12 dB. As a control signal, a fourth
time-series composed entirely of AWGN is also included.
The parameters of each signal are provided below:
• Quadratic Chirp – The instantaneous frequency of a

constant-amplitude sine wave was continuously swept
from an initial minimum of 1 Hz to final maximum of
495 Hz (99% of the Nyquist frequency) in a quadratic
fashion.

• QPSK – The phase of a constant-amplitude sine wave,
with a nominal frequency of 4 Hz, was set for each
1 second interval according to the following sequence:
45◦, 225◦, 135◦, 315◦, 45◦, 135◦.

• MFSK – The frequency of a constant-amplitude sine
wave with zero phase was set for each 1 second interval
according to the following sequence: 4 Hz, 8 Hz, 16 Hz,
12 Hz, 4 Hz, 16 Hz.

• AWGN – For comparison, a pure AWGN (no signal)
waveform is generated at the same signal power and
sampled at the same rate as the other three waveforms.

The 2-D embedding via HT of the chirp, QPSK, MFSK,
and AWGN time-series are shown in the top row of Fig. 3,
respectively. Clearly, the three information-bearing signals
are differentiable from the pure noise scenario, and all three
primary signals appear to embed as noisy circles. This is
particularly remarkable since the frequency and/or phase
of these signals vary in time throughout the measurement
window, and the algorithm has no knowledge of these
parameter transitions.

One can observe that points exist near the center of noisy
circles which would hinder attempts at homological feature
recovery. However, these points are not very dense in the
space. Furthermore, the density of the point cloud appears
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Fig. 3. Top Row: Plots of the chirp, QPSK, MFSK, and AWGN signals embedded with the Hilbert transform (all data points included).
Bottom Row: Filtered versions of the top row with only the densest 50% of points included, as measured by shortest distance to the 25th nearest neighbor.

to be approximately uniform as function of distance from the
unit circle, which was only true for TDEs which induced a
relative phase shift of π

2 . This symmetry can be exploited to
reduce the total number of data points while simultaneously
improving cycle detection, by using the method of dense core
subsets included in [10]. By retaining only the 50% densest
points as measured by distance to the 25th nearest neighbor,
we obtained the 2-D plots provided in the bottom row of
Fig. 3. After this process, which can be loosely considered
as a sort of topological filtering, the three cycles appear much
more dense around the ideal path of a circle of radius 1, while
the pure noise signal becomes more dense around the origin.
While not shown due to space constraints, it is obvious that
the 1-D barcodes corresponding to the filtered, information-
bearing signals would contain a large feature that the AWGN
signal would not.

VII. CONCLUSION

By extending the set of possible embedding functions
of time-series data beyond simple delta functions, we were
able to overcome many of the drawbacks of TDEs for 1-D
sinusoidal data while simultaneously reducing the amount of
data necessary for a persistence computation. In particular,
we found a new application for the Hilbert transform in the
domain of signal processing via TDA. The authors wish
to emphasize that while the focus of the paper was on
periodic, sinusoidal signals as a standard case-study, the
results of Section VI suggest broad applicability to many
classes of quasi-periodic signals. These include modulated
communication signals, radar pulses, and acoustic vocal-
izations in both real-time and static analysis scenarios. As
such, there are many potential applications, including, for
example, improved wheeze detection such as discussed in
[3], novel methods for estimating signal parameters such as
those proposed in [5], cognitive radio spectrum sensing, radar

pulse detection, and exploratory data analysis. In future work,
we plan to formalize the effects of noise and filtering on
the persistent homology of the periodic signal, and attempt
to derive “optimal” embedding functions for more complex
signals and datasets (e.g., multi-carrier modulated signals).
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