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Abstract—We propose an energy cost minimization strategy
for cooperating households equipped with renewable energy
generation and storage capabilities. The participating house-
holds minimize their collective energy expenditure by sharing
renewable energy through the grid. We assume location and
time dependent electricity prices, as well as parametrized
transfer fees. We then formulate an optimization problem
to minimize the energy cost incurred by the participating
households over any specified planning horizon. The proposed
strategy serves as a performance benchmark for online energy
management algorithms, and can be implemented in real time
by incorporating adequate forecasting techniques. We solve the
optimization problem through relaxation, and use simulations
to illustrate the characteristics of the solution. These simulations
show that energy sharing takes place when there are differences
in the load/generation and price profiles across participants. We
also show that no energy sharing takes place when the load is
above the local generation at all times.

Index Terms—Renewable energy optimization, storage man-
agement, non-convex optimization.

I. INTRODUCTION

The power grid is undergoing an important transformation,
and the adoption of information technologies to modernize
the electricity grid is expected to enable the general public to
participate in various energy-saving initiatives [1], [2]. These
initiatives are, often times, part of demand side management
programs [3], which are used by utility companies to reduce
peak loads and make their distribution systems more cost
and energy efficient [4], [5]. Demand side management can
be achieved through direct load control or dynamic elec-
tricity pricing. In the latter, utility companies design pricing
schemes to influence users’ power consumption patterns, and
thus achieve the desired demand response.

Households benefit from dynamic electricity pricing to
reduce their energy bills [6]. Users can schedule their tasks
to avoid peak pricing periods, or use storage devices to
defer grid energy consumption to low pricing hours, without
sacrificing comfort. Given the growth that the production
of renewable energy (RE) has had in the past decade [7],
it is of interest to investigate how RE can be used to
reduce households’ energy expenditure, and what impact
does cooperation have on RE usage performance. This has
motivated us to propose an optimization strategy for a group
of grid-tied households equipped with RE generation and
storage facilities.

Specifically, in this paper we propose an optimization strat-
egy to minimize the collective energy expenditure incurred
by a group of households over a finite planning horizon. The
households are allowed to share RE through the grid at a

transfer fee set by the utility company. To ensure generality,
we assume location and time dependent electricity prices, as
well as parametrized transfer fees. We formulate and solve
a mathematical problem to determine the optimal energy
cooperation strategy among participating households. We
also use simulations to illustrate the characteristics of the
optimal strategy.

The main contribution of this paper is a mathematical
framework that can be used to determine the optimal energy
cooperation strategy in a very general setting. The obtained
strategy allows us to find performance bounds, which can be
used to benchmark online energy management algorithms.
Moreover, the proposed strategy can be implemented in real
time by incorporating adequate forecasting techniques. In this
paper we also investigate the characteristics of the solution
and highlight the conditions under which energy sharing is
an optimal strategy.

Closely related works on building/home energy manage-
ment include [8]–[13], where strategies are proposed to
minimize the building’s electricity bill by scheduling its
deferrable appliances. The frameworks in [8] and [11] take
into account comfort constraints imposed by users. Electrical
vehicles are considered as part of the set of appliances in
[10], and energy storage devices (ESDs) are accounted for
in [9], [13].

Energy management in a microgrid environment has been
studied in [14]–[17], where strategies based on capacity
planning are proposed to achieve cost minimization. Cooper-
ative energy management has been investigated in [18]–[23],
where strategies are proposed for economic dispatch, load
matching, and power loss minimization. RE trading schemes
have been analyzed in [24], where a profit maximization
strategy is devised for an energy harvesting company. Finally,
strategies based on evolutionary algorithms and game theory
have been proposed in [25]–[28].

Unlike existing works, our proposed strategy assumes a
non-deferrable power consumption, thus respecting users’
preferences. Moreover, our proposal aims at minimizing the
energy cost incurred by a group of users participating in
a demand response program, which was not considered in
[18]–[23]. Also, we assume that the participating households
do not compete with each other, as the achievable cost
savings can be dividing among participants following a
fairness-based approach. Finally, this paper discusses the
conditions under which energy sharing should be adopted
as an optimal strategy, and the situations in which it can be
avoided. Thus, our results can be used for network planning
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purposes, and their corresponding capital budgeting.

II. SYSTEM MODEL

Power
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REMU

Fig. 1. System Model. REMU stands for renewable energy management
unit.

A. Planning Horizon, Objective, and Decision Variables

We consider M grid-tied households, as shown in Fig. 1,
and seek to minimize their collective energy cost incurred in
the planning horizon [0, T ], with T > 0. Each household
is subject to different energy consumption patterns, and
electricity prices. The power consumed by the ith household
is denoted by Li(t) > 0, t ∈ [0, T ], and is assumed to
be non-deferrable. The power drawn from the grid is thus
controlled through storage management by scheduling the
use of RE in [0, T ]. The decision variables are the charging
and discharging schedules of all the ESDs in the system, as
well as the energy transfer operations among the households.

B. Renewable Energy Production and Storage Allocation

Each household is equipped with an RE generator and
a storage device. Households share RE through the grid,
thus incurring transfer fees. The total power received by
household i from others is denoted by Γi(t), while the total
power transferred from the household i to other households
is denoted by Θi(t). If the power transferred from household
i to household j is denoted by Πi,j(t) ≥ 0, ∀ t, then:

Γi(t) =

M∑
j 6=i

Πj,i(t), Θi(t) =

M∑
j 6=i

Πi,j(t), ∀ t. (1)

Following energy conservation, Γi(t) and Θi(t) must satisfy:
M∑
i=1

Γi(t) =
M∑
i=1

Θi(t), ∀ t. (2)

C. Energy Storage Devices (ESDs)

The ESDs in the system have the following characteristics:
• Charging/discharging losses: The charging/discharging effi-

ciency rates of the ESD at the ith household are respectively
αi and βi, and satisfy 0 < αi ≤ 1 and 0 < βi ≤ 1. A
lossless charging/discharging operation happens when the
charging/discharging efficiency rate is 1.

• ESD dynamics: The RE available in the ESD at the ith
household is Ji(t) ≥ ∀ t ∈ [0, T ], and satisfies:

Ji(t) = Ji(0) +

∫ t

0

[
αiCi(x)− 1

βi
[Di(x) + Θi(x)]

]
dx,

(3)
where Ci(t) ≥ 0 and Di(t) ≥ 0, ∀ t, are, respectively,
the power charged to the ith ESD, and the power used up
by the ith household.

• Bounded storage capacity: The capacity of the ESD at the
ith household is denoted by Ψi. Therefore, Ci(t) and Di(t),
i ∈ {1, . . . ,M} must be such that:

0 ≤ Ji(t) ≤ Ψi,∀ t ∈ [0, T ]. (4)

• Bounded charging/discharging rate: Each ESD has a limited
charging/discharging rate, and hence,

Ci(t) ≤ qC,i, Di(t) + Θi(t) ≤ qD,i, ∀ i, ∀ t ∈ [0, T ],
(5)

where qC,i > 0 and qD,i > 0 are respectively the maximum
charging and discharging rates of the ESD at the ith house.

D. Renewable Energy Generation

The total power generated at the ith facility is Ri(t) ≥
0, ∀ t ∈ [0, T ]. Therefore, the power charged into the ESD
at the energy farm satisfies:

Ci(t) ≤ min{qC,i, Ri(t) + Γi(t)}, ∀ t,∀ i, (6)

where Γi(t), defined in (1), is the total power received by
the ith household from other cooperating households.

E. Pricing Scheme

To ensure generality, we consider location and time
dependent electricity prices. The cost of the energy
consumed by the ith household in [0, T ] is ξi =∫ T

0
Pi(t) [Li(t)−Di(t)] dt, where Pi(t) ≥ 0, ∀ t, ∀ i, is

the pricing function, and Di(t) satisfies

Di(t) ≤ Li(t), ∀ t. (7)

The cost of the energy consumed by the entire group of
households is thus χ =

∑M
i=1 ξi. This model generalizes

pricing schemes in the discrete domain. The pricing functions
Pi(t)’s are assumed known in advance because they are part
of a demand response program where the utility sets the
prices, and the consumers react by scheduling their ESDs.

III. PROBLEM FORMULATION AND SOLUTION STRATEGY

We formulate a mathematical problem to determine the op-
timal energy management strategy for the system described
in Sec. II. The formulation seeks to minimize χ, the cost
incurred by all the households in [0, T ]. The achieved cost
savings can then be allocated to the participants following a
fairness-based criterion.

A. Power Transfer Matrix

To simplify notation we define the following power trans-
fer matrix Π(t) , [Πi,j(t)], where Πi,j(t), i, j ∈
{1, . . . ,M}, defined in Sec. II-B, is the power transferred
from household i to household j. Since the power exchange
cannot happen simultaneously, the elements of Π(t) must
satisfy:

Πi,j(t)Πj,i(t) = 0, ∀ t, ∀ i 6= j. (8)

In addition, the elements of Π(t) are all non-negative. We can
interpret the diagonal elements of this matrix as the power
that the ith household transfers to itself, or said otherwise,
uses locally. Hence, we can let Πi,i(t) = Di(t) ∀ i, ∀ t.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 197



B. Transfer Charges

To ensure generality, we assume transfer fees proportional
to the energy rates offered to the receiving household.
Therefore, the cost incurred by the set of households in
moving

∑M
i=1 Θi(t) power units across the network is:

ε =
M∑
i=1

ρ

∫ T

0

Pi(t)Θi(t)dt, (9)

where 0 ≤ ρ ≤ 1. The transfer fee is zero when ρ = 0. This
fee is charged by the utility and accounts for the power loss
incurred in the operation. If the utility has sufficient power
delivery capacity, then the power transfer will not need to
happen physically, and the operation can be recorded as an
economical transaction.

C. Problem Formulation

The optimization problem can be cast in terms of the
decision variables Π(t) and the Ci(t)’s as follows:

P1A: min
C1(t),...,CM (t),Π(t)

χ+ ε

s.t. (2), (4), (6), (7), (8)

In P1A, the objective is the energy cost incurred by the
group of facilities, plus the cost of the RE transfers that take
place in [0, T ]. Moreover, the Ji(t)’s and Π(t) are connected
through (3). The quantities Γi(t) and Θi(t) were defined
in terms of Π(t) in (1). P1A is not a convex optimization
problem because its objective is a functional (not a function),
its decision variables are trajectories (not vectors or scalars),
and it involves an infinite number of constraints, as stated in
(4).

An alternative formulation can be obtained by casting the
problem directly in terms of the Ci(t)’s, the Di(t)’s, the
Θi(t)’s, and the Γi(t)’s. Consequently, the power transfer
matrix can be obtained from (1), and (8). Hence, the resulting
optimization problem is:

P1B: min
Ci(t),Di(t),Θi(t),Γi(t), i ∈ {1,...,M}

χ+ ε

s.t. (2), (4), (6), (7).

In P1B, the Ji(t)’s, the Di(t)’s, and the Θi(t)’s are con-
nected through (3). Again, P1B is a non-convex optimization
problem, which we relax to find an approximate solution, as
explained in Sec. III-D.

D. Solution Strategy

We can use discretization to solve P1B at N equally-
spaced sampling points. In the discrete domain, the decision
variables become column vectors, and are denoted respec-
tively by ci, di, θi, γi, i ∈ {1, . . . ,M}. That is: ci(k) =
Ci(k∆t), di(k) = Di(k∆t), θi(k) = Θi(k∆t), γi(k) =
Γi(k∆t), ∀ k, where k ∈ {1, . . . , N} and ∆t > 0 is the
sampling period. We also introduce the following definition
to simplify the constraint (4):

MD = [α∆tAN − 1

β
∆tAN − 1

β
∆tAN 0N,N ],

where AN is the N × N lower triangular matrix of ones.
Clearly, MD is an N × 4N matrix. By using MD, the
constraint (4) can be written compactly as follows:

0N,1 �MD


ci
di

θi

γi

 � [Ψi − Ji(0)]1N,1, ∀ i, (10)

where � denotes element-wise ≤. The constraints that appear
in P1B can be written in the discrete domain by using matrix
notation as follows:


IM ⊗MD

−IM ⊗MD

IM ⊗ [IN 0N,2N − IN ]
IM ⊗ [0N,N IN IN 0N,N ]
11,M ⊗ [0N,2N − IN IN ]





c1

d1

θ1

γ1
...

cM
dM

θM

γM


�


v1

r1

...
rM
v2

 ,

(11)
where vT

1 = [(Ψ1 − J1(0))11,N , . . . , (ΨM − JM (0))11,N ,
01,NM ] and vT

2 = [qD11,NM ,01,N ]. The dimensions of
the objects in (11) are as follows: the leftmost matrix has
4MN +N rows and 4MN columns, the vector containing
the decision variables has 4MN elements, and the column
vector at the right-hand-side has 4MN +N elements. If we
relax the constraint (2) to

M∑
i=1

Γi(t) ≤
M∑
i=1

Θi(t), ∀ t, (12)

then, the optimization problem P1B can be cast in the
discrete domain as a linear program by using the definition of
MD. Introducing this relaxation will not affect the solution
because a necessary1 optimality condition is that the Γi(t)’s
and the Θi(t)’s must satisfy (12) with equality. Therefore, the
constraint (2) will be automatically satisfied by the solution
simply by enforcing (12).

IV. NUMERICAL RESULTS

We provide numerical results to illustrate the proposed
energy management strategy. Throughout this section we
consider the simulation parameters shown in Table I, where
minPrice ∈ R+, maxPrice ∈ R+, minLoad ∈ R+,
maxLoad ∈ R+, minGen ∈ R+, maxGen ∈ R+, and U(a, b)
indicates uniform2 distribution between a and b. Simulations
results are reported using normalized quantities, which are
measured in generic units. Storage capacities are measured in
energy units [EU], cost in monetary units [MU], and power
quantities in power units [PU].

1It is suboptimal to dispatch energy if it will not be used at its destination.
Hence, in the relaxed formulation, the optimal strategy will satisfy (12) with
equality.

2The uniform distribution is chosen for prices, RE generation, and load
because it reflects total uncertainty given known lower and upper limits.
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TABLE I
SIMULATION SCENARIOS

Parameter Value
{T, ∆t, M, J(0), ρ} {23, 1, 2, 0, 0}
Pi(t) ∼ U(minPrice,maxPrice)
Li(t) ∼ U(minLoad,maxLoad)

Ri(t)

{
∼ U(minGen,maxGen), t ∈ {1, dN/2e}
0 t > dN/2e{

qC,i, qD,i,Ψi, αi, βi
}
{1, 1, Ψ1, 1, 1, ∀ i}

A. Energy Sharing Optimal Schedules

We consider the simulation parameters shown in Table
I with minLoad = 1, maxLoad = 1, minGen = 1,
maxGen = 1, minPrice = 0, maxPrice = 1, and illustrate
the obtained optimal schedules in Fig. 2. As seen, the energy
sharing mechanism is triggered despite having L1(t) = L2(t)
and R1(t) = R2(t) ∀ t. Moreover, it is observed that
a limited storage capacity prompts more frequent energy
sharing operations.
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Fig. 2. Energy sharing strategy with differences across pricing functions.
Top: Ψ1 = Ψ2 = 1. Bottom: Ψ1 = Ψ2 = 10.

We now consider the simulation parameters shown in
Table I with minLoad = 0, maxLoad = 1, minGen = 1,
maxGen = 2, minPrice = 1, maxPrice = 1, and illustrate
the obtained optimal schedules in Fig. 3. As seen, the
energy sharing mechanism is used even when there are no
differences between the two pricing functions. Again, it is
observed that a limited storage capacity prompts a more
frequent energy sharing mechanism.

B. Performance of the Proposed Strategy

The proposed strategy can be evaluated in terms of the
achievable cost savings and the RE unused due to battery
overflow. Let D∗1(t), . . . , D∗M (t) denote the optimal dis-
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Fig. 3. Energy sharing strategy with constant pricing functions. Top: Ψ1 =
Ψ2 = 1. Bottom: Ψ1 = Ψ2 = 10.

charging profiles obtained by solving P1B. Then, the total
RE unused in [0, T ] is:

URE =
M∑
i=1

∫ T

0

[Ri(t)−D∗i (t)] dt. (13)

We consider the simulation scenario shown in Table I with
minLoad = 1, maxLoad = 1, minGen = 0, maxGen =
{1, 2}, minPrice = 0, maxPrice = 1. Then we plot the
average energy cost incurred in [0, T ], and the average
amount of RE unused, both against the storage size Ψi,
which ranges from 1 to 10 [EU], in Fig. 4. These results
were computed by averaging over ten thousand realizations.
As observed, both the energy cost and the RE unused in
[0, T ] decrease with the storage size Ψi, especially when the
generation capacity is above the load.
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Fig. 4. Left: Average cost incurred in [0, T ] vs. storage capacity. Right:
Average RE unused in [0, T ] vs. storage capacity.

We now consider the simulation scenario shown in Ta-
ble I, except for qC,i and qD,i, which we set as follows:
qC,i = 0.2 Ψi

∆t , qD,i = 0.2 Ψi

∆t . Moreover, we let minLoad = 1,
maxLoad = 1, minGen = 0, maxGen = {1, 2}, minPrice =
0, and maxPrice = 1. Then we plot the average energy cost
incurred in [0, T ], and the average amount of RE unused,
both against the storage size Ψi, which ranges from 1 to 10
[EU], in Fig. 5. These results were computed by averaging
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over ten thousand realizations. As observed, the energy cost
and the RE unused in [0, T ] decrease consistently with the
storage capacity Ψi. It is also seen that a storage capacity
above 8 [EU] does not affect (significantly) the final energy
cost. This suggests that there is a minimum storage size
which ensure maximum RE utilization.
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Fig. 5. Left: Average cost incurred in [0, T ] vs. storage capacity. Right:
Average RE unused in [0, T ] vs. storage capacity.

V. CONCLUSIONS

We have proposed an optimization strategy for a set of
households equipped with renewable energy generation and
storage facilities. The households exchange renewable energy
through the grid to minimize their energy cost. Transfer fees,
and location and time dependent energy prices have been
considered in the model. We have developed a mathematical
framework to determine the optimal energy management
strategy in different scenarios. We have also provided nu-
merical results to illustrate the characteristics of the optimal
strategy. Our simulations have shown that the energy sharing
mechanism is used when there are differences in the pricing
functions, loads, and generation profiles across participating
households. Moreover, no energy sharing takes place when
all the loads are above the local generation capacities at all
times. The energy cost and the amount of renewable energy
unused in the planning horizon have been shown to decrease
as a larger storage capacity is deployed in the system.
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