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Abstract—Due to a wider diversification of gas sources, today
tracking gas in distribution grids is of great interest for gas
grid operators to provide fair invoicing of gas customers.
Substitute natural gas (SNG), e.g. derived from raw biogas,
injected concurrently into natural gas grids may differ in
its calorific value Hs compared to fossil natural gas in the
grid. This is manifesting in deviating chemical compositions
of injected grid gases. Remarkably, the chemical fractions of
SNGs fluctuate significantly over time exhibiting time-dependent
signatures. Sampling over relevant features of injected gases, e.g.
the chemical species concentrations at standard temperature
and pressure, by means of calibrated sensors, provides time-
dependent signals which can be taken for gas tracking purposes.
To that end, we present an accurate technique to estimate the
transit times of gas between nodes, e.g. from an entry to an exit
point. As a result, calorific value extrapolation from one gas
grid node to a downstream node, with an accuracy sufficient for
gas customer invoicing, is feasible. In an experimental section
we show a normalized root-mean-square deviation (NRMSD)
< 0.3% with respect to calorific value estimation.

Index Terms — Viterbi algorithm, dynamic time warping,
gas tracking, calorific value tracking, distribution grids

I. INTRODUCTION

Powerful state of the art software for gas tracking, e.g. E.ON
SmartSim [1, 2], utilize mainly numerical methods based on
computational fluid dynamics (CFD). All recently applied
methods implemented in software produce reliable and pre-
cise results, provided that grid topology features (i.e. the exact
length, diameter and surface roughness of gas pipes, time
dependent injection gas flows, temperatures and pressures)
are submitted with sufficient accuracy by the gas grid operator
and are correctly transferred into the simulation model. Any
substantial deviations between model parameters and physical
reality, typically lead to incorrect gas tracking and calorific
value (CV) estimation. Challenging grid structures, e.g. loop
topologies with multiple forks, can additionally result in
ambiguous outcomes, due to insufficient model accuracy.

In this paper, we show that feasible gas and CV tracking
can be implemented based on signal processing methods
utilizing calibrated sensors along distribution grids. Our new
gas tracking method is based on the Viterbi algorithm [3, 4].
It is capable of CV tracking by finding an optimal mapping
between two signals that have been sampled at distinct loca-
tions (nodes) along a distribution grid. The following section
II describes the procedure from data sampling to transit times
and calorific value estimation. It is performed in three steps,
outlined in the following sections II-A, II-B, II-C. Then, we
explain our novel approach for gas tracking in-depth. In an
experimental section III we demonstrate gas tracking in a real-
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Fig. 1: By process gas chromatography (PGC) hourly measured
fractions of the chemical components in natural gas (top) and
upgraded biomethane (lower diagram). The dotted lines represent the
corresponding calorific values. (Data collected at gas-to-grid plant
BZBiogas Lüchow in Lüchow Germany. Timescale: 7 days, between
2013-07-18 00:00 and 2013-08-25 00:00)

world gas grid. Finally we give a conclusion and an outlook
in section IV.

II. GAS TRACKING WITH SENSOR SIGNALS

Figure 1 shows the chemical compositions of Natural Gas
(top) and upgraded biomethane (bottom), both concurrently
injected into the distribution grid in Luechow, Germany.
Remarkably, as can be seen in Figure 1, the chemical fractions
in the substitute natural Gas (bottom) are exhibiting intrinsic
fluctuations. This phenomenon implies that the compositions
of SNGs vary over time and additional, partly nondetermin-
istic, hidden factors impose time dependent signatures, i.e.
fingerprints, onto the biogas compositions, that can be tracked
along the piping over time.

A. Sequential data recording by infrared sensor sampling

For our novel approach we use time series obtained contin-
uously at equidistant points in time by means of calibrated
sensors, e.g. by process gas chromatography (PGC), at distant
locations along the piping network of natural gas grids. The
minimum sampling rate results from required precision for
gas and CV tracking. Currently, sampling gas with a rate
of fs = 0.28 mHz, corresponding to one sample every
∆ts = 3600 seconds, i.e. one sample every hour, proves
to be sufficient for hourly tracking gas from one source q
to an output node o. Our approach is limited to a pair of
nodes (q, o), for which the downstream node o, e.g. an exit
node, is fed by one source q only. Then, accurate monthly gas
customer invoicing on the node o becomes feasible with our
approach. By sampling multiple time-varying gas features on
relevant nodes simultaneously (e.g. the concentration of one
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Fig. 2: Gas-signals sq [j] and so [k] sampled at different locations,
e.g. at an inlet q and an exit node o, appear delayed, additionally
either compressed or expanded, i.e. nonlinearly warped along the
time axis. Gas that has been sampled at an inlet is consumed along
its way through the grid and flow velocities change rapidly over
time. Natural gas distribution grids therefore appear as time-variant
systems.

or more chemical species, the gas density and so forth) at the
same thermodynamic condition (e.g. standard temperature and
pressure (STP) [5]), redundant information is obtained and
can afterwards be used for error-tolerant data processing, as
will be shown in section III.

B. Time series analysis utilizing the Viterbi algorithm

Two time series are recorded at two different grid nodes,
an entry node q and an exit node o, simultaneously and
continuously at equidistant points in time. Gas transit times
τ [k], with k := [1 : M ], need to be estimated for gas tracking
purposes by finding an optimal alignment between temporally
overlapping time series sq := (sq [1] , sq [2] , ..., sq [N ]) and
so := (so [1] , so [2] , ..., so [M ]) of length N,M ∈ N meeting
the following condition:∑

k

(so [k]− sq [k − τ [k]])
2 → min (1)

Sequence so is thereby the delayed signal sampled on a
downstream node o, in the favored flow direction of gas,
remote from the source node q. With a naive approach for
minimization in 1, non-causal assignments will occur with
transit times τ < 0, which are physically impossible. At the
same time, gas is a compressible medium and volumetric flow
rates and consumption conditions on outlet nodes may change
rapidly over time while gas travels the distance between two
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Fig. 3: The state σj
k thereby means “sq [j] is aligned to so [k]”.

State transitions put two sequential alignments into relation.

sensors (e.g. gas may stand still in the pipes if no gas is
taken out, the flow-direction may turn if, e.g., a valve is
opened, etc.). Therefore, aligned sequences do not only appear
constantly delayed, but additionally expanded or compressed
along the time domain (see Figure 2).
In order to respect thermodynamic restrictions on the one
hand, and to cope for varying delay times on the other hand,
the alignment is modeled as a state machine (see Figure 3).
The state σjk thereby means “sq [j] is aligned to so [k]”. Every
alignment between sq and so is represented by one path κ
through the trellis. For instance, the transition σj1k → σj2k+1

means “ sq [j1] is aligned to so [k] and s1[j2] is aligned to
so [k + 1]” resulting in successive entries in the path vector
κ [k] = j1 and κ [k + 1] = j2.
Rolling out the state-machine over time leads to a trellis as
shown in Figure 4. Hence, the optimal path through the trellis
leads to an optimal alignment. Physical constraints translate
naturally to path conditions:
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Fig. 4: Rolling out the state transition diagram in Figure 3 over
time, for the alignment of the time series sq to so of figure 2,
yields a trellis as shown in this figure. Any path κq through the
trellis renders a possible alignment between sq and so. Mapping
of single features from sq to multiple features of so (expansion
– Figure 2), corresponds to horizontal steps along the path in the
trellis. Vice versa is not feasible. Multiple features from sequence sq
can be omitted instead (compression – Figure 2) since counterparts
in the sequence so are missing. For every omission the path κ [k] is
shifted by one vertical state upwards. All paths are restricted to the
band (light green window) enclosed by the transit times boundaries
τmin ≤ τ [k] ≤ τmax, i.e. condition 2. and 3.

1. Alignment starts with the index tuple (1, 1).
2. A lower bound transit time must be considered for

causality, i.e. τ [k] ≥ τmin, with τmin ≥ 0. The red
dotted line in Figure 4 represents τmin = 0 and the light
red dashed line τmin > 0.
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3. An upper bound τmax of gas transit times can be
expected to exist as long as gas is regularly consumed
on the downstream node, so that τ [k] ≤ τmax.

The squared distance

d (sq[j], so[k]) = (sq [j]− so [k])
2 (2)

with j = k − τq [k], represents a measure for the quality of
alignment between the j-th element of sq and the k-th of so,
corresponding to the state σjk. Indexes j of all alignments to
the corresponding index k are stored in a path matrix, denoted
Ψ. For all tuples (k, n) within a path κq [k] = n of transitions,
the overall cost must be minimized for optimal alignment. By
defining an accumulated cost or distance matrix δq [n, k] ∈
RN×M

≥0 , an optimal path κq [k] of alignment between sq and
so, within the band defined by the constraints ξ in Eq. 9 and γ
in Eq. 10 (light green area in figure 4), can be found utilizing
the Viterbi algorithm following the steps 1 to 4:

1) Initialization

δ [j, k] =∞ (3)
(4)

for 1 ≤ j ≤ N and 1 ≤ k ≤M

δ [1, 1] =d (sq [1] , so [1]) (5)
ψ [1, 1]=0 (6)

2) Induction

δ [j, k]= min
ξ≤λ≤γ

δ [λ, k − 1] + d (sq [j] , so [k]) (7)

ψ [j, k]=arg min
ξ≤λ≤γ

δ [λ, k − 1] (8)

(Only paths within the band constrained by ξ in Eq. 9
and γ in Eq. 10 are allowed)

ξ = min (N, max (1, bk − τmax + 1c)) (9)

γ = min (N, max (1, [k − τmin + 1])) (10)

for ξ ≤ j ≤ γ and 2 ≤ k ≤M

3) Termination

κ [M ]=arg min
ξ≤λ≤γ

δ [λ,M ] (11)

for k = M

4) Path Backtracking

κ [k] =ψ [κ [k + 1] , [k + 1]] (12)

for k = M − 1, M − 2, M − 3, ..., 1

Conditions 2, i.e. τ [k] ≥ τmin, and 3, i.e. τ [k] ≤ τmax,
displayed in Figure 4, limit the number of cells that are
evaluated in the accumulated cost matrix δ. That speeds up
the Viterbi algorithm through complexity reduction. Similar
constraints are widely used in dynamic time warping. Two
of the most commonly used bounds are the Sakoe-Chiba
Band [6] and the Itakura Parallelogram [7].
In the induction step Eq. 7 the overall costs for each possible

path of transitions beginning in the initialization (5) to the
actual tuple (j, k) are stored in the accumulated cost matrix
δ [j, k]. In Eq. 8 only those indexes of j for k − 1 are stored
in the path matrix ψ [j, k] ∈ NN×M

0 which exhibit minimum
overall cost within δ [ξ ≤ j ≤ γ, k − 1]. By locating the min-
imal overall cost in the M th column of accumulated cost
matrix δ (termination 11) the row index κ [M ] for starting
backtracking in 12 is being set.
After backtracking transit times τ [k] for the source q to the
node o can be derived:

τ [k] = k − κ [k] , 1 ≤ k ≤M (13)

C. Gas tracking and calorific value determination

Once the transit times vector τ for a pair of nodes (q, o) has
been estimated, gas and therefore calorific value tracking can
be performed. At gas grid entry points calorific values Hs,q
are hourly measured by calibrated PGC. By utilization of τ
the calorific values in Hs,q sampled on the node q can be
extrapolated with

Hs,o [i] = Hs,q [i− τ [i]] (14)

to succeeding sensor locations o, with i := [1 : M ], to derive
the vector Hs,o. Then, CV tracking for customer invoicing is
feasible. This is presented in the next section III.

III. RESULTS

Gas features, the CO2 content in Vol.-% and the gas density
(denoted ρ) in kg

m3 taken for transit times estimation (see Fig-
ure 6), as well as the calorific values taken for validation and
extrapolation, had been sampled at the same thermodynamic
conditions on two source nodes (denoted LA45 and LG01)
and one exit node (denoted LA10), in the natural gas grid
Lüchow (Germany) operated by e.on Avacon AG (see Figure
5). The data had been recorded in the period from 2014-07-01
06:00 to 2014-09-30 05:00. The evaluation of our approach,
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Fig. 5: Signals based on sampled gas features obtained in the gas
grid topology of Lüchow (Germany), have been successfully tracked
from the entry point Biogas BZ (LA45) (green bold characters) to
the exit Jameln (LA10) (pink bold characters), corresponding to a
distance of about 11 kilometers, utilizing our method

presented in this section, is performed by consideration of one
dominant source q (= LA45) only. Partial contributions of any
other sources in the grid (e.g. q = LG01) to the sampled gas on
the exit node o (= LA10), are neglected. Software based gas
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Fig. 6: Gas features, the CO2 content in Vol.-% (top) and the gas
density in kg

m3 denoted ρ (bottom), sampled at the gas-to-grid plant
Biogas BZ Lüchow (LA45) and the exit Jameln (LA10) (see Figure
5). Timescale: 91 days, 2014-07-01 06:00 to 2014-09-30 05:00.
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Fig. 7: By aligning signals of the same feature category from the
source node LA45 onto signals sampled on the exit LA10, transit
times τ CO2

LA45,LA10 and τρLA45,LA10 can be estimated. As can be seen,
results for both feature categories are slightly deviating. Thereby
obtained transit times can afterwards be averaged to one single transit
times vector τ̄LA45,LA10, needed for extrapolation of calorific values
Hs,LA45 from the source q = LA45 to the exit node o = LA10.

tracking (SmartSim[1]) provided valid transit time boundaries
τmin and τmax (see Section II-B), as well as the assurance that
the exit node o has almost exclusively been fed by the biogas
inlet q within mentioned period. In order to estimate transit
times of gas between q and o, signals of the same gas feature
category, i.e. either the sampled CO2 content or the sampled
gas density ρ, are optimally aligned onto each other utilizing
the Viterbi algorithm as mentioned in Section II-B. Resulting
transit times are presented in the Figure 7. With obtained
transit times vectors, the source signals can be warped along
the time axis for error determination between the warped
source and sampled signals of the exit node. The warped
source signals with rel. deviations are presented in Figure 8.
Derived transit times vectors τCO2

LA45,LA10 and τρLA45,LA10, since
they are deviating, are averaged into one single transit times
vector τ̄LA45,LA10 needed for extrapolation of calorific values
from the source to the exit, the gas customer, node with Eq.
14, so that

Hs,LA10 [i] = Hs,LA45 [i− τ̄LA45,LA10 [i]] (15)

0,00

0,20

0,40

0,60

0,80CO2 LA45 - aligned
CO2 LA10
rel. deviations

C
O

2 [
Vo

l-%
]

1,00

2,00

3,00

0,00

0,01

0,02

0,03

0,04ρ - LA45 - aligned
ρ - LA10
rel. deviations

ρ 
[k

g 
m

-3
]

0,75

0,78

0,80

Time [h]20
14

-07
-08

20
14

-07
-15

20
14

-07
-22

20
14

-07
-29

20
14

-08
-05

20
14

-08
-12

20
14

-08
-19

20
14

-08
-26

20
14

-09
-02

20
14

-09
-09

20
14

-09
-16

absolut relative Error

Fig. 8: As a measure for the quality of alignments between source
and exit signals (CO2 (top) and ρ (bottom)), and the transit times
estimation, in this figure the extrapolated signals from the source
(LA45) are presented on top of the signals sampled on the exit
node (LA10) by calibrated measurements. Additionally the relative
deviations (errors) between aligned and sampled exit node signals
are shown.
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Fig. 9: With estimated average transit times τ̄LA45,LA10, derived
through our proposed approach, the calorific values from the source
Hs,LA45 have been extrapolated to the downstream node (LA10) to
obtain Hs,LA10, the estimated calorific values on the exit node. In the
top diagram, both, the source as well as the exit node calorific values
sampled by calibrated PGC, are presented together with the relative
errors (euclidian distance, divided by the reference signal Hs,o,PGC).
In the diagram bellow, the extrapolated source (LA45), aligned with
τ̄LA45,LA10, as well as the measured calorific valuesHs,o,PGC from the
exit (LA10), and the deviations (errors), are presented. Additionally
in the bottom diagram, the volumes of ejected gas on the exit node
in the same period, is presented. The volumes are taken for the
determination of monthly volume weighted deviations with Eq. 18.

for i := [1 : M ] (see Figure 9). For validating (see Tab. I) our
approach, as a measure for the quality of alignments between
source and extrapolated exit node signals, for the CO2 signal
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and the normalized density ρ as well as for the calorific values
Hs, we provide the Root Mean Square Deviation.

RMSD = E
[
(Hs,o −Hs,o,PGC)

2
] 1

2

(16)

In Eq. 16 the extrapolated CVs from the source (LA45) are
denoted Hs,o and the calibrated measurements from the exit
node (LA10) are denoted Hs,o,PGC (see Eq. 15). The same
equation 15 taken for CV extrapolation, can be taken for
extrapolation of the CO2 and ρ source signals. In addition, for
all sampled signals we give the Normalized RMSD yielding

NRMSD =
RMSD

E [Hs,o,PGC]
(17)

And for the calorific values only, we provide the monthly
volume weighted deviations between extrapolated and mea-
sured CVs, which are of great relevance with respect to gas
customers invoicing.

H̄V =

∑M
i=1 (Hs,o,PGC [i]−Hs,o [i]) · VLA10 [i]∑M

i=1Hs,o,PGC [i] · VLA10 [i]
(18)

TABLE I: For all sampled gas feature signals the RMS deviation
and the normalized RMSD in % between the extrapolated source and
calibrated exit node signals are provided. For the calorific values the
monthly volume weighted deviations in % between extrapolated CVs
and the reference CVs measured by PGC demonstrate the in average
high accuracy of the gas tracking approach presented in this paper.

CO2

Measure Month July August September

RMSD [Vol-%] 0.114 0.09 0.165
NRMSD [%] 8.501 8.426 17.31

Normalized gas density - ρ
Measure Month July August September

RMSD
[

kg
m3

]
0.002 0.003 0.004

NRMSD [%] 0.266 0.324 0.494

Calorific values - Hs,LA10
Measure Month July August September

RMSD
[

kWh
m3

]
0.020 0.021 0.027

NRMSD [%] 0.180 0.192 0.221
Vol-Weighted Dev. [%] 0.016 0.023 0.003

IV. CONCLUSION

As the experiments in sec. III show, our method, alternatively
to gas flow simulations, enables gas and CV tracking with
high accuracy. In a future approach, additionally to what we
have already presented in this publication, a source separation
step will be introduced for enabling the decomposition of
superimposed sources, sampled in gas mixtures on exit nodes,
therefore generally improving our method over complex
topologies. Additionally, the signal transmitting properties of
gas piping will be investigated and discussed.
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