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Abstract—This paper proposes robust acoustic scene classifi-
cation (ASC) to multiple devices using maximum classifier dis-
crepancy (MCD) and knowledge distillation (KD). The proposed
method employs domain adaptation to train multiple ASC models
dedicated to each device and combines these multiple device-
specific models using a KD technique into a multi-domain ASC
model. For domain adaptation, the proposed method utilizes
MCD to align class distributions that conventional DA for ASC
methods have ignored. The multi-device robust ASC model is
obtained by KD, combining the multiple device-specific ASC
models by MCD that may have a lower performance for non-
target devices. Our experiments show that the proposed MCD-
based device-specific model improved ASC accuracy by at most
12.22% for target samples, and the proposed KD-based device-
general model improved ASC accuracy by 2.13% on average for
all devices.

Index Terms—acoustic scene classification, domain adaptation,
maximum classifier discrepancy, convolutional neural network,
knowledge distillation

I. INTRODUCTION

Acoustic scene classification (ASC) is one of the ongo-
ing research subjects, which classifies input audio data into
pre-defined scene classes, such as office, train station, and
airport [1], and expected to be applied to various fields,
e.g., robotic navigation [2], context-aware services [3], and
surveillance systems [4]. For those applications that need
to identify the environment in a variety of situations, the
recording devices are diverse, such as surveillance cameras,
smartphones, smart speakers, and embedded microphones.
Since each of these devices has its own encoding method and
microphone characteristics, audio data from the same sound
source have different characteristics depending on the devices.
For real-world ASC applications, ASCs that support all de-
vice characteristics in advance are impractical. Robustness
to sounds recorded by various recording devices including
unknown devices is very important.

ASC is a classification task which associate semantic labels
with audio recordings (for example labeling an environment
as ’In a bus” or ”In a meeting”). Recently, methods based
on image recognition techniques that use the spectrograms
as image features have become a popular approach. These
methods use convolutional neural networks (CNNs) to perform
the classification [5]-[7]. The CNN-based approaches have
shown its effectiveness for ASC and become a strong baseline.
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Although the CNN-based method has shown its effectiveness,
they have a problem for ASC with audio data recorded by
multiple devices.

Spectral structures of recorded audio vary depending on the
characteristics of the device, such as encoding and micro-
phones. As a consequence, the sounds in the same acoustic
scenes recorded by different devices have different spectral
structures. This is a critical issue for CNNs that deal with
spectra as images and leads to degradation of classification per-
formance. Furthermore, collecting a huge amount of training
data on multiple devices for training is unrealistic. There is a
need for a method of efficiently training for utilizing audio data
recorded by multiple devices with different characteristics.

To tackle this problem, domain adaptation (DA) [8] plays an
important role. DA is a method for obtaining common features
among multiple domains with different characteristics. In
many cases, DA is employed for efficient training of data from
a data-poor domain (target domain) using knowledge from a
data-rich domain (source domain). Some DA methods for ASC
have been proposed [9], [10] and proven that their DA-based
methods are more effective than simply use all domain data
as one data set. [10] employs an additional constraint for
distributions of extracted features to match the distribution of
both source and target device. As a consequence, the extracted
features have the same distribution regardless of the difference
of the recording devices.

These DA methods deal with the distribution of the dataset
as a single distribution, do not consider the distribution of each
class in the dataset. There is no guarantee that the distribution
of each class can be matched properly. This is because most
DA methods imply that each class can be properly identified in
the source domain. Under this assumption, the distribution of
the common feature can be appropriately obtained by matching
the target domain with the source domain where each class
can appropriately be classified. However, the assumption that
each class can be classified with 100% accuracy in the source
domain is not realistic. In reality, even if the distributions of
the domains are matched, the distribution of each class may
be mixed, which leads to a degradation in the classification
performance of either the target or the source domain, i.e.,
a trade-off. With this trade-off, a multi-domain robust ASC
cannot be realized. Therefore, in order to realize a multi-
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Fig. 1. Workflow of the DA method based on MMD

domain robust ASC, there is a need for a way to align the
class distributions in multiple datasets properly and to handle
the knowledge of each domain properly.

We propose a new method for multi-domain robust ASC
using a combination of DA and a knowledge distillation
(KD) [11]. For DA in the proposed method, we utilize the
state-of-the-art DA in the computer vision field, maximum
classifier discrepancy (MCD) [12], which can properly con-
sider distributions of each class within domains. By using
MCD, the distribution of classes within a domain is properly
aligned. However, since the trade-off problem still remains,
models obtained by MCD is still device-specific. So, the
proposed method newly introduces KD to utilize multi-domain
knowledge. First, the proposed method uses MCD for each
device to train multiple device-specific models, aligning dis-
tributions of each class. Next, a multi-device robust model
is obtained by KD using the device-specific models as mul-
tiple teacher-models. The proposed method treats the class
distributions within each domain by MCD, and device-specific
knowledge is effectively employed by KD to obtain the multi-
device robust model.

II. DOMAIN ADAPTATION FOR ASC

The basic idea of domain adaptation methods for ASC is to
extract domain-invariant scene-features by removing domain
information. The DA neural network (DANN) [9] is the most
basic DA method and consists of a scene feature generator and
two classifiers; a scene classifier and a domain classifier that
share the scene-feature as their input. The feature generator
is trained to minimize the scene classifier loss and maximize
the domain classifier loss. The obtained scene feature cannot
classify domain of the input audio, i.e., DANN can remove
the domain-wise characteristics from scene features.

Some DA method exploits an additional constraint of a dis-
tance between distributions of features from different domains
to minimize the domain difference. The most popular choice
of the distance measure is a maximum mean discrepancy
(MMD) [10], which is a matching method of all orders of
statistics between sets of samples based on a kernel method.
Fig. 1 shows a network for DA using MMD, where x, and x;
are input audio clips from source and target domains, respec-
tively, and f; and f; are output of the feature generator for
input x4 and x, respectively. By minimizing the MMD of f;
and f;, since the source and the target distribution are brought
closer, the features from different domains are obtained from
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the same distributions regardless of the difference of domains.
In the Detection and Classification of Acoustic Scenes and
Events (DCASE) 2019 competition [13], ASC methods using
MMD-based DA have already been proposed [14], [15].

Although these DA methods have shown effectiveness, these
DA methods deal with the distribution of the dataset as a single
distribution, do not consider the distribution of each class in
the dataset. Since the distribution for each class in each domain
is not aligned, there is no guarantee that the obtained scene
features are distributed for each class. Therefore, there is a
possibility that an appropriate classification boundary common
to the domains cannot be obtained, and the improvement of the
classification accuracy in the target domain is not guaranteed.
A method that takes into account the alignment of each class
is required.

III. PROPOSED METHOD

We propose a domain-robust ASC method using MCD
and KD. The proposed method adopts MCD to train device-
specific classification models and combines the device-specific
models using the KD technique into a multi-domain classifi-
cation model.

A. Maximum Classifier Discrepancy

MCD is a state-of-the-art method for DA, and is proposed in
[12]. The method adjusts the distribution of source and target
by exploiting the decision boundary between the two classi-
fiers, leading to domain-robust classification. Specifically, the



TABLE I

ARCHITECTURE OF BASELINE METHOD IN DCASE 2019

Layer Output shape  Kernel size
Input 1 x 40 x 500 -
Conv2dI 32 x 40 x 500 TXT

BatchNorm2d1 32 x 40 x 500 -
ReLUI 32 x 40 x 500 -
MaxPool2d1 32 x 8 x 100 5X5b

Dropoutl (30%) 32 x 8 x 100 -
Conv2d2 64 x 8 x 100 TXT

BatchNorm2d2 64 x 8 x 100 -
ReLU2 64 x 8 x 100 -

MaxPool2d2 64 x 2 x1 4 x 100

Dropout2 (30%) 64 x2x1 -
Flatten 128 -
Densel 100 128 x 100

Dropout3 (30%) 100 -
Dense2 10 100 x 10

TABLE II

HYPER-PARAMETERS FOR MEL-ENERGY FEATURE EXTRACTION

window length 40 ms
window type hamming asymmetric
hop length 20 ms
number of FFT bins 2048
number of mels 40

MCD network is composed of a feature generator G' and two
classifiers Fy and F, and trains G, Fj, and F, by repeating
the three steps (Step 1, 2, and 3). In Step 1, G, Fi, and F5
are trained using only source samples as input so that the
MCD network can correctly classify the source one. Fig. 2
is a learning flow diagram of Step 2 and 3. In Step 2, the
generator is fixed, and only two classifiers are updated. By
training the classifiers to increase the discrepancy, they can
detect the target samples excluded by the support of the source.
Here, p;(y|x:) and py(y|x;) are predictions of F and F; for
x4, respectively, and the discrepancy is as follows:

K
d(p1,p2) == % Z |P1k — D2k, (D
k=1
where pi, and pop are probability output of p; and p, for
class k, respectively. The discrepancy evaluates ¢; norm of
difference probabilities classified class k. For this step, MCD
simultaneously maximizes the discrepancy between F} and
F> and minimizes the categorical cross-entropy loss for the
source sample. As a result, the decision boundary of F} and
F5 can be made different while ensuring the classification
accuracy of the source sample. In contrast, in Step 3, F}
and F, are fixed, and G is learned for m times so that the
discrepancy of the two classifiers for the target samples is
minimized. This allows you to move the target domain in
the region where the predictions of the two classifiers do not
match into that where the predictions match. In [12], MCD has
achieved high classification accuracy for image classification
and segmentation, but a method applied to ASC has not been
proposed yet. Since MCD uses task-specific information for
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training classifiers, we expect MCD to help to build a device-
specific model.

B. ASC Method with MCD and KD

To build a multiple-device-robust model, we employ KD to
combine device-specific models obtained with adapting for the
individual devices by MCD. KD is a technique that trains a
new model (student model) using both a pre-trained model
(teacher model) and training data, and some conventional
methods utilizes the KD techniques for the ASC tasks [17],
[18]. The teacher model has a similarity between the feature
domains of each class in the output of the hidden layer before
the softmax processing (logit), and the student model can
utilize the similarity by distillation. The loss function of KD
is defined by

L =(1 = X) Loote (Yoot ™", yofi ™)
+ /\T2£hard (ytruev yﬁea(?zlherL
where Lgopr and Lyn,q are categorical cross-entropy loss,
yteacher gng ystudent are outputs of softmax with temperature
T of teacher and student model, respectively, ¥ e 1S @ ground-
truth label, and y{°2" is the output of the teacher model. The
parameter A balances the weight between Lo and Lya.4, and
the student model can be effectively trained by suitable .

Multiple device-specific classification models are employed
as teacher models: a general teacher and specialists of each
device of target samples. All models are trained by using
MCD. The specialists use the audio data of each device as
target samples. In Step 3 of MCD, the models minimize only
the discrepancy because MCD assumes the situation no having
target labels. However, since we can utilize target labels in
this work, models minimize both discrepancy and categorical
cross-entropy loss for effective learning.

The training flow of the proposed method is shown in
Fig 3. The proposed method prepares three teacher models
and averages of their logit. For this setting, the student could
learn features that are more robust to the device than each
teacher.

IV. EXPERIMENTS

We demonstrate the performance of the proposed method
on Task 1.B of DCASE 2019, which is to classify audio data
collected by three devices into 10 acoustic scene classes, i.e.,
k = 10, where their devices consist of a high-performance
audio recorder A and two mobile devices, B and C. We used
the data of device A as source samples and that of device
B and C as target samples. To evaluate the proposed method
using the combination of MCD and KD, we have conducted
two experiments: (i) Evaluation of the device-specific model
using MCD (ii) Evaluation of the robustness of the multi-
device model using MCD and KD.

A. Experimental Settings

In this section, we describe experimental settings. We em-
ploy a two layer CNNs as a base network of our proposed
method, whose architecture is shown as Tab. I. The inputs



TABLE III

DATASETS OF DCASE 2019 TASK 1-B

device A device B device C
(high-performance audio recorder) (mobile device) (mobile device)
training data 6120 415 415
validation data 3065 125 125
test data 4185 540 540
TABLE IV )
HYPER-PARAMETERS FOR TRAINING MODEL ® baseline ® MMD = MCD
80 target
baseli baseline baseline b %) unknown device
aseIne |/ MMD w/ MCD - \
epoch 200
batch size 64 | 33 \ ]3 40 MMD: -5.18%
optimizer Adam [16]
learning rate 0.001
20
of the baseline method are log mel-band energies. Tab. II
shows setting for the log mel-band energies. Tab. III shows the
. S . . 0
number of training, validation, and test data 1.n the experiments, device A device B device C
where we randomly selected 30% of the train data of Task1.B 7\ /
as validation data. .
For all ASC method based on DA, the feature generator W baseline ® MMD © MCD target
consists of two CNN layers without batch normalization layers 0
in Tab. I, i.e., from the Conv2dl layer to Dropout2 layer, and .
the other layers are the classifier. In the paper, we adopt MMD :w:
as compared DA method, and the parameters of the compared 40
and proposed method were set like Tab. IV. In MCD method,
we set the number of the generator update m = 2.
In the second experiment, we set the parameters A = 0.5 »
and 7' = 0.01 in the loss function of KD, and the training data
of the general teacher is the audio data of all devices.
B. Comparison between MMD and MCD °
We demonstrate the performance of the specialists of de- device A device B J{ _ device C _J

vices B and C using MCD. In this experiment, we compared
the specialists using MCD with that using MMD. Fig. 4
shows the ASC accuracy by each method for the test samples.
In Fig. 4, one can see that MCD outperforms the other
methods for target samples, and in the case of the specialist
of device C, the ASC accuracy of unknown device data is
also improved. On the other hand, in the case of the specialist
of B, MCD reduces the ASC accuracy for unknown device
compared with MMD, because device A and C would have
similar characteristics. The results show that MCD achieves
high DA performance. However, MCD cannot successfully
classify source samples compared with baseline, so one can
see that there is a trade-off between source and target domains.
Therefore, only using MCD is incomplete to achieve device-
robust classification.

C. Knowledge Distillation

We inspect the performance of the proposed device-specific
ASC method using MCD and KD compared with ASC meth-
ods using MMD and KD. We trained the general teacher and
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Fig. 4. ASC accuracy on the specialist of device B (top) and the specialist
of device C (bottom). This figure shows that MCD outperforms the other
methods regarding the target samples but reduces the ASC accuracy of the
source samples.

the specialist of B and C using the audio data collected by all
devices, devices A and B, and devices A and C, respectively.

Fig. 5 shows the ASC accuracy of the test samples by the
ASC methods with DA (top) and the ASC methods with DA
and KD (bottom). In the top of Tab. 5, one can see that the
method only using MCD improves ASC accuracy for the target
samples, but that of the source samples drops because of the
trade-off between source and target domains. The bottom of
Tab. 5 shows that the proposed KD-MCD method can achieve
higher ASC accuracy for the source and target samples.
Therefore, the proposed KD-MCD can successfully extract
robust features to the device without trade-off between source
and a target domain and achieve to device-robust classification.
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Fig. 5. ASC accuracy on DA methods (top) and KD methods (bottom). One
can see that the DA methods reduces the accuracy of the source samples, but
the KD methods using MCD improve it for all devices.

V. CONCLUSION

We proposed a new robust ASC method to multiple devices,
which trains device-specific classification models using MCD
and combines them by KD. MCD is one of the state-of-
the-art DA methods, which can move the target domain in
the source domain using a discrepancy between the output
of two classifiers. However, since the source sample cannot
be classified correctly, MCD faces a trade-off between the
classification accuracy of the source and target samples. In
order to resolve the problem, our proposed method adopts
KD with one general classification model and two device-
specific classification models. Therefore, the proposed method
can effectively classify the audio data of all devices than
the method only using DA. In the experiments, the proposed
method successfully classifies for all devices. In the future, we
will try to use other powerful networks as the base.
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