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Abstract—This paper proposes a sound event localization and
detection (SELD) method using a convolutional recurrent neural
network (CRNN) with gated linear units (GLUs). The proposed
method introduces to employ GLUs with convolutional neural
network (CNN) layers of the CRNN to extract adequate spectral
features from amplitude and phase spectra. When the CNNs
extract features of high-dimensional dependencies of frequency
bins, the GLUs weight the extracted features based on the
importance of the bins, like attention mechanism. Extracted
features from bins where sounds are absent, which is not
informative and degrade the SELD performance, are weighted
to 0 and ignored by GLUs. Only the features extracted from
informative bins are used for the CNN output for better SELD
performance. Obtained CNN outputs are fed to consecutive bi-
directional gated recurrent units (GRUs), which capture temporal
information. Finally, the GRU output are shared by two task-
specific layers, which are sound event detection (SED) layers
and direction of arrival (DoA) estimation layers, to obtain SELD
results. Evaluation results using the TAU Spatial Sound Events
2019 - Ambisonic dataset show the effectiveness of GLUs in the
proposed method, and it improves SELD performance up to 0.10
in Fl-score, 0.15 in error rate, 16.4° in DoA estimation error
comparing to a CRNN baseline method.

Index Terms—Sound Event Localization and Detection, Recur-
rent Convolutional Neural Network, Gated Linear Unit

I. INTRODUCTION

Understanding the environment using sound is one of
the important functions for home monitoring and advanced
surveillance system [1]-[7] , and so on. In this field, lots of
sound event detection (SED) methods, which identify types of
the sound events, have been proposed. However, these methods
are classification methods that only identify the class of the
sound events. For monitoring and surveillance systems, not
only the class of the sound events, but also the direction of
Arrival (DoA) of the sound events is an important factor.

Recently, a new task, sound event localization and detection
(SELD), has been launched at DCASE challenge 2019 [8],
which is a combined task of SED and DoA estimation. More
than 20 methods are proposed in this challenge, and the most
popular choice of the method is a convolutional recurrent
neural network (CRNN) [9]-[13]. [10] combines a CRNN and
an additional network which estimates the number of active
sound event to estimate DoA of overlapping sound events.

978-9-0827-9705-3

Masahito Togami
Research Labs
Line Corporation
Tokyo, Japan

41

Tsubasa Takahashi
Research Labs
Line Corporation
Tokyo, Japan

[11], [12] employ 2 CRNNs which dedicated to SED and DoA
estimation. [13] uses a new GCC-Phat-based feature for the
input of the CRNN.

Almost all of these methods have the same CRNN structure
as the DCASE challenge baseline method [9]. [9] uses ampli-
tude and phase spectra as input and performs SED and DoA
estimation simultaneously. For dealing only with amplitude
spectra, the CRNN is one of the promising approaches as
is shown that the CRNN-based SED method outperforms
other neural network based models [14], [15]. However, for
dealing with phase spectra, the CRNN cannot always be
effective. It is due to CNN layers in the CRNN, which extract
spectral features that represent high-dimensional dependencies
of frequency bins. For example, in the case of amplitude
spectra, frequency bins where sounds are absent are useful
clues for characterizing and identifying sound events. On the
other hand, in the case of phase spectra, frequency bins where
sounds are absent are physically meaningless and completely
unnecessary. In the CNN layers, the meaningless bins also
can be treated as same as informative bins, which lead to
degradation of the DoA estimation performance. Therefore,
using phase spectra for the CRNN input in the same manner
as amplitude spectra have an adverse effect. A method to select
informative frequency bins for phase spectra is required.

To select informative input, gated linear units (GLUSs) has
been proposed [16] in the natural language processing field.
GLUs are connected in parallel with each CNN layer to control
the CNN outputs, like controlling a valve, instead of the
activation function. The GLU is made of a CNN layer and
trained to weight the connected CNN output by importance
of input, like an attention mechanism. The effectiveness of
GLUs has been also shown for modeling of amplitude spectra,
such as audio source separation [17] and weakly labeled
training [18]. However, the effectiveness of GLUs on phase
spectra has not been studied and clarified yet.

This paper proposes a CRNN-based SELD method using
GLUs. GLUs can learn which frequency bins of amplitude and
phase spectra have important information for DoA estimation
and SED, and output features extracted only from informative
mnput.
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Fig. 1. CRNN-based SELD method. Both the baseline method and the proposed method employ this structure.

Azimuth&Elevation

The only difference is in the CNN blocks,

that the baseline method uses CNNs with ReLU activation while the proposed method uses GLUs for them.
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Fig. 2. CNN block in the baseline method

GLU block

I Batch norm I
v
I Linear I

input
|
1
Max pooling

I Batch norm I
¥
[ sigmoid |

Fig. 3.
method

GLU which replaces the CNN block in the CRNN-based SELD

II. THE PROPOSED SELD METHOD WITH GLUS

In this section, we describe a standard CRNN-based
method [9] which is a baseline method of DCASE 2019 SELD
task and the proposed CRNN-based SELD method using
GLUs. The structures of two methods are almost the same. The
only difference is that the baseline method employs standard
CNNs with ReLU activation for spectral feature extraction
while the proposed method employs CNN layers with GLUs.
It should be noted that the structure of CRNN to use GLUs is
not limited to this baseline. Any other SELD methods which
have CNN layers can be adopted.

A. The CRNN baseline method

The CRNN based baseline method [9] and CNN blocks
are illustrated in Fig. 1 and Fig. 2. Input of the method is
time-frequency (T-F) representation, which consists of am-
plitude and phase spectrograms extracted from multi-channel
audio recordings. The T-F representations are fed to CNN
layers and the CNN layers extract features that represent
high-dimensional dependencies of each frequency bins. The
extracted features are then sent to bi-directional gated recurrent
units (GRUs) to capture temporal context information. The
outputs of the recurrent layers are shared as input of con-
secutive two layers, the SED layers and the DoA estimation
layers. The SED layers output probabilities of event classes
in each time frame of the input T-F representation. The
DoA estimation layer outputs event-class-wise azimuth and
elevation angels in each time frame. Training of the network
parameters is performed by multi-task learning that minimizes
the weighted sum of SED loss and DoA estimation loss. For
SED loss, multi-class binary cross entropy between the ground
truth and the probability of each event-class, for DoA loss,
multi-output regression loss defined by the squared distance
on the spherical surface between the estimated angle and the
grand truth are used.

It has been found that CNNs, which capture the dependen-
cies of each frequency bins, are effective methods for charac-
terizing structures of amplitude spectra [17], [18]. However, in
the case of phase spectra, CNNs may not always be effective.
For DoA estimation, frequency bins, in phase spectra, where
sounds are absent are completely unnecessary and physically
meaningless. Therefore, using the CRNN for DoA estimation
in the same manner as acoustic event detection may have an
adverse effect.

B. The proposed method

The structure of the proposed method is almost same as
the baseline method in Fig. 1. To select informative bins
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for spectral feature extraction, we propose to use GLUs in
Fig. 3 instead of CNN blocks with ReLU activation. GLUs
are defined as:

Y=Wx«X+b)0s(VxX+c) ()

where X and Y represent input and output to GLUs, respec-
tively. W and V are the convolutional filters, b and ¢ are
the biases. ® denotes the element-wise product and * is the
convolution operator. o (+) is the sigmoid function which works
as a gating function of GLUs.

The sigmoid function works to control information as: If
X is informative input, the sigmoid function makes output
close to 1, and hence the extracted feature is used as output.
If X is not informative input, the sigmoid function makes
output close to 0, the extracted feature is ignored. In this
way, GLUs weight the extracted feature by the importance
of corresponding input as an attention mechanism. Using the
GLUs, CNNs can extract feature from phase spectra properly.
GLUs ignore the frequency bins where sounds are abset, and
the CNN feature extractor uses only bins including essential
information.

III. EXPERIMENTAL EVALUATION

Experimental evaluation is conducted to measure the effec-
tiveness of GLUs of the proposed SELD method. A method
for comparison is the baseline method. The only difference
between the baseline method and the proposed method is
whether to use CNNs with ReL U activation in Fig. 2 or GLUs
inFig. 3. All parameters for both methods are set to the same
values.

A. Datasets and parameters

The TAU Spatial Sound Events 2019 Ambisonic
dataset [19] is used for the experiment. The summary of the
dataset is shown in Table I. The dataset consists of 400 files
of four-channels first-order-ambisonics audio recording. The
sampling rate for each recording is 48000 Hz and length
of each recording is 1 minute. Sound event classes in the
dataset is 11 classes of events. The number of azimuth and
elevation angles of sound source direction is 36 with 10°
interval from —180° to 180° and 9 with 10° interval from
—40° to 40°, respectively. Pre-defined four cross-validation
setups (split 1, split 2, split 3, split 4) are also provided
with audio recordings. Each setup assigns 200 recordings for
training, 100 recordings for validation and 100 recordings for
testing. In this paper, experiments are conducted based on the
provided cross-validation setups.

For input of the neural network, T-F representations are
obtained by short time Fourier transform with 2048 sample
points, 40 ms window length (1920 sample points) and 20 ms
hop length (960 sample points). The network parameters of the
proposed method are shown in Table II. The input shape (32,
1024, 128, 8) corresponds to (mini-batch size, frequency bins,
time frames, channels (amplitude and phase)). 2D CNN filter
= (3,3,6) denotes a 2D CNN layer with (3, 3) filter size and
64 channels. Pool size (1, 8) denotes max pooling operation
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TABLE I
TAU SPATIAL SOUND EVENTS 2019 - AMBISONIC

Sampling

f 48,000 [Hz]
requency
number of 400 recordings

audio recordings ( 1 min. per recording)

clearthroat  keyboard  pageturn
Event classes cough keysDrop  phone

doorslam knock laughter
drawer speech

36 angles with 10° interval
from —180° to 180°
9 angles with 10° interval
from —40° to 40°

azimuth angles

elevation angles

TABLE I
NEURAL NETWORK ARCHITECTURE OF THE PROPOSED METHOD

Input: shape = (32, 1024, 128, 8)
2D CNN 2D CNN
filter = (3, 3, 64) filter = (3, 3, 64)
Batch normalization Batch normalization

Linear Sigmoid
Multiply
Max pooling: pool size (1, 8)
2D CNN 2D CNN

filter = (3, 3, 64)
Batch normalization

filter = (3, 3, 64)
Batch normalization

Linear Sigmoid
Multiply
Max pooling: pool size (1, 8)
2D CNN 2D CNN

filter = (3, 3, 64)
Batch normalization
Linear

filter = (3, 3, 64)
Batch normalization
Sigmoid

Multiply
Max pooling: pool size (1, 4)
Bi-directional GRU

128 nodes
Bi-directional GRU
128 nodes
Fully connected layer Fully connected layer
128 nodes 128 nodes
Fully connected layer Fully connected layer
22 nodes 11 nodes
Linear Sigmoid
DoA estimation output SED output
(22, 128) shape (11, 128)

is applied to 8 bins on frequency axis. The number of epochs
is 250. These network parameters including the number of
epochs are almost same as the default parameter of the baseline
method described in [9]. Adam [20] is used as the stochastic
optimization method.

Experiments results are evaluated using the following three
metrics; For SED metrics, Fl-score and error rate (ER) are
calculated in one-second segments [21]. For DoA estimation
error, the average angular error in degrees between the pre-
dicted DoAs and true DoAs [22] are used.

B. Experimental results

Figs. 4-(a), (b) and (c) show Fl-scores and ERs of SED
metric and DoA estimation error, respectively. For all cross-
validation setups, the proposed method with GLU has been
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Fig. 4. Experimental results

shown superior performance. At the maximum, 0.10 in FI-
score, 0.15 in ER, 16.4° in DoA estimation error improve-
ments have been shown. In particular, the higher the im-
provement in error rate, the higher the improvement in DoA
estimation performance. It is considered that GLUs of the
proposed method are able to appropriately select informative
frequency bins for DoA estimation.

The proposed SELD framework with GLUs can be applied
to any kind of CNN-based SELD method, not limited to
baseline. Almost all methods proposed in DCASE2019 Chal-
lenge including top-ranked methods employ CNNs but they
do not have any kind of gated or attention mechanism. So,
the proposed SELD framework with GLUs are easily applied
to any other CNN-based SELD method and there can be
improvement in SED and DoA estimation performance.

IV. CONCLUSION

This paper has proposed a sound event localization and
detection (SELD) method using a convolutional recurrent
neural network (CRNN) and gated linear units (GLUs). GLUs
are connected in parallel with each CNN layer to control the
CNN outputs instead of the activation function. When the
CNNs extract features of high-dimensional dependencies of
frequency bins, the GLUs weight the extracted features based
on the importance of the CNN input, like attention mechanism.
Frequency bins where sounds are absent are ignored by GLUs
and only bins with essentially information are used by the
CNN feature extractor. Evaluation results using the TAU
Spatial Sound Events 2019 - Ambisonic dataset has shown the
effectiveness of GLUs in the proposed method, and it improves
SELD performance up to 0.10 in Fl-score, 0.15 in error rate,
16.4° in DoA estimation error comparing to a CRNN baseline
system.
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