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Abstract—In this paper, we propose a multi-channel speech
source separation technique which connects an unsupervised
spatial filtering without a deep neural network (DNN) to a DNN-
based speech source separation in a cascade manner. In the
speech source separation technique, estimation of a covariance
matrix is a highly important part. Recent studies showed that
it is effective to estimate the covariance matrix by multiply-
ing cross-correlation of microphone input signal with a time-
frequency mask (TFM) inferred by the DNN. However, this
assumption is not valid actually and overlapping of multiple
speech sources lead to degradation of estimation accuracy of the
multi-channel covariance matrix. Instead, we propose a multi-
channel covariance matrix estimation technique which estimates
the covariance matrix by a TFM for the separated speech
signal by the unsupervised spatial filtering. Pre-filtered signal
can reduce overlapping of multiple speech sources and increase
estimation accuracy of the covariance matrix. Experimental
results show that the proposed estimation technique of the multi-
channel covariance matrix is effective.

Index Terms—Speech source separation, time-frequency mask-
ing, deep neural network, multi-channel covariance matrix esti-
mation

I. INTRODUCTION

Speech source separation techniques have been actively
studied for improvement of speech quality of hands-free
communication systems and automatic speech recognition
systems. Thanks to high expression capability of the deep
neural network (DNN) for complicated speech spectrum, the
DNN-based speech source separation has evolved so much. A
popular approach of the DNN-based speech source separation
is a time-frequency mask based approach [1]-[5]. Under the
assumption that speech sources rarely overlap in the time-
frequency domain, single-channel speech source separation
can be performed by multiplying the inferred time-frequency
mask and the microphone input signal. However, since multi-
ple speech sources overlap actually in the same time-frequency
point, time-frequency masking suppresses overlapped speech
sources and generates distortion in the output signal.

In the multi-channel speech source separation context, the
time-frequency masks inferred by the DNN are utilized for
estimation of a multi-channel covariance matrix of each speech
source. The multi-channel covariance matrix is estimated by
averaging cross-correlation of time-frequency masked micro-
phone input signal along time-axis [6]—-[10]. Since the final
output signal is generated by a multi-channel spatial filter-
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ing, the distortion of the output signal of the multi-channel
approach is less than that of the single-channel approach.
However, the DNN for time-frequency mask estimation does
not optimize multi-channel speech source separation perfor-
mance. To optimize the multi-channel speech source separa-
tion performance, we propose a DNN-based speech source
separation in which the output signal after multi-channel
speech source separation is evaluated [11], [12]. However,
this method also estimates the multi-channel covariance matrix
with time-frequency masking for microphone input signal
under the assumption that speech sources rarely overlap in
the time-frequency domain.

In this paper, we propose a novel covariance matrix estima-
tion method with a DNN. Instead of time-frequency masking
for the microphone input signal, the proposed method infers
the time-frequency mask for a separated multi-channel speech
signal which is estimated by an unsupervised spatial filtering.
Since overlapping of multiple speech sources in the estimated
multi-channel speech source signal is reduced, the proposed
method is less affected by the overlapping problem of multiple
speech sources in time-frequency domain. In this setting, a
loss function which evaluates the inter-mediate time-frequency
mask is not applicable, because we cannot define an oracle
time-frequency mask for the spatial filtered signal. Instead,
the proposed method adopts a loss function which evaluates
the output signal after speech source separation [11], [12].
Although the oracle signal of the time-frequency mask for
the spatial filtered signal cannot be defined, the proposed loss
function can train the DNN by evaluating the speech quality of
the output signal. Experimental results show that the proposed
covariance matrix estimation for the spatial filtered signal is
more effective than the covariance matrix estimation for the
microphone input signal.

II. SIGNAL MODEL
A. Microphone input signal

Microphone input signal is modeled as an instantaneous
mixture in time-frequency domain as follows:

N,
Ty = Zcu,lw (D
i=1

where x; ;, (I is the frame index and k is the frequency index)
is the multi-channel microphone input signal at each time-
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frequency point, the number of the microphones is N,,, and
Ny is the number of the speech sources. The objective of multi-
channel speech source separation is to estimate c; ; ,, from the
observed microphone input signal x; j.

B. Probabilistic modeling based on local Gaussian modeling

The local Gaussian modeling (LGM) based speech source
separation method [13] is a common approach for multi-
channel speech source separation under the assumption that a
prior probability density function (PDF) of each speech source
belongs to a time-varying Gaussian distribution with a zero-
mean vector and a time-varying covariance matrix as follows:

plciiklor) = N(€ikl0,vi 6 Rik), 2

where v; ;1 is the time-frequency activity of the i-th speech
source, R;; is the time-invariant multi-channel covariance
matrix of the i-th speech source, ¢y is a model parameter
which is defined as {{v; i x}:1, {Ri}i}. Based on the prior
PDF of each speech source, the posterior PDF of each speech
source is estimated under the condition that the microphone
input signal x; j is given as follows:

) = N(Ci ki, Viik) 3)

where p;; and V. are the mean vector of the posterior
PDF and the covariance matrix of the posterior PDF, respec-
tively. p; ;5 and V;; ; can be calculated as follows:

pleig,

Witk = Wil kil k, €]

Viig =T =W )Rk, )

where I is a N,, x N,, identity matrix and W, ; is the
multi-channel Wiener filter which is defined as follows:

N,—1 -1
Wik = Ri,l,k( Z Rgﬁlyk> . (6)
i=0

After estimating the parameter ¢, we can obtain the spatially
filtered signal by Eq. 4.

III. CONVENTIONAL SPEECH SOURCE SEPARATION
METHODS

A. Unsupervised speech source separation for local Gaussian
modeling

Unsupervised speech source separation approaches [13],
[14] update the parameter of each frequency ¢ so as to
minimize the negative log likelihood function Fy(¢r) =
>, —log p(xi k|Px). By using the prior PDF of each speech
source defined in Eq. 2, Fj(¢x) can be calculated as follows:

Lt
k) = Z :cfkR;ikmlyk + logdet R ; 1 + const. (7)
=1

where H is the Hermitian transpose operator of a matrix/vector
and Ry, = Zl v;1,k i 1 1s the multi-channel covariance
matrix of the microphone input signal. It is difficult to mini-
mize F(¢r) w.r.t. ¢y directly. Instead, an auxiliary function

approach [14], [15] is adopted. An auxiliary function can be
obtained as follows:

Lp
tr( mle”kR szlk)
F(on,
k (¢k /Yk) ; Uz,l,k (8)
+logdet U, j, + tr( R, 11U, ;) — Non,
where Em_yk = wl,kmﬁk and the auxiliary variable ~j is

{Qi,1 1, Ui} The auxiliary function satisfied the following
condition:

~
<
z
AN

n;;cnf,;*(qsk,vk)- (10)

.

S

z
\

We can decrease Fj(¢r) monotonically by minimizing
Fif (¢1,v6) W.rt. ¢, and 7, alternately, because

]_-(¢§€t+1)) S]_-.l,_( I(ct+1)7’y]£:t+1)>

< FH (oA an
= F(oy),
where t is the iteration index. ¢, (+1) can be obtained as
follows:
RV =6 T #(R IR, (12)
t),—1 5 t),—1 p(t+1
LD _ ) u(RY) Roy kR RYTY) 13)
Ui 1k Yilk tr(RS,)l’,;le(,thl)) ’
where G, = ), v,-,l’kR;j’k, # is the geometric mean

operator [16], and J;, = >, vi’lykR;j ka’l,kR;} - Af-
ter the parameter optimization in each 7frequency bin, the
inter-frequency permutation problem is solved by an external
permutation solver, e.g., a power-spectral correlation based
method [17].

B. Deep neural network based speech source separation

Recently, multi-channel speech source separation techniques
on the basis of deep neural network (DNN) have been pro-
posed. The covariance matrix of each speech source R, is
estimated with time-frequency masking which is inferred by
a DNN [6]. The DNN-based methods separate speech sources
without an external inter-frequency permutation solver based
on high expression capability of speech spectrum of the DNN.
Under the assumption that multiple speech sources rarely
overlap with each other, a multi-channel covariance matrix
of each speech source is estimated as follows:

E Mk kxlkv

i,k

R = (14)

Zz

where M, ; ;. is the time-frequency mask for the i-th speech
source. However, speech sources are frequently overlap. Let
the microphone input signal «;j, be ¢;;x + 7%, where
Tilk = Z#i cj1,r and 7; ;5 is the summation of the other
signals except of the i-th speech source signal. Under the
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assumption that multiple speech sources are independent of
each other, R; ; can be approximated as follows:

1
Ry Z " ZMz‘,ukCi,l,kal,k

g lekhzk’mlk,

i,l,k

Zz

where the first term of Eq. 15 is corresponding with the correct
covariance matrix of the i-th speech source and the second
term is corresponding with the covariance matrix of the other
speech sources. These two matrices are non-negative definite
matrices. Therefore, the output R,; j, always over-estimates the
correct covariance matrix.

IV. PROPOSED METHOD

A. Overview of proposed method

Block diagram of the proposed method is shown in Fig. 1.
In the proposed method, prior to the DNN-based parameter
estimation, the LGM-based speech source separation is per-
formed. The separation parameter ¢ is updated based on
Eq. 12 and Eq. 13. The MWE W, ; 1 & is obtained with ¢\"*’
(L is the number of iterations) by Eq. 6. The spatially filtered
speech source y; ;1 is estimated as ;1 r = Wauns,i 1 kTl k-
The input feature for the successive neural network is defined
as log spectral of the filtered signal y;;x , cosfy, ., and
sin 0y, , ., where 0, , is the phase difference between micro-
phones in y; ; . The neural network estimates time-frequency
masks for y;; ;. The neural network structure is shown in
Fig. 2. The neural network consists of four bidirectional long
short term memory (BLSTM) layers with 1200 hidden units
and three dense layers. The neural network infers the time-
frequency mask M; ;. that estimates the ratio of the i-th
speech source in the j-th output signal y;;; and the time-
frequency activity of each source wv;;j. The multi-channel
covariance matrix of each speech source is obtained by time-
frequency masking for y; ;. A posterior PDF of each speech
source is obtained via the estimated multi-channel covariance
matrix. The loss function of the proposed method evaluates the
posterior PDF of each speech source directly regarding each
speech source as a probabilistic variable [11] , which is shown
to be more effective than the [ loss function based method.

B. Time-frequency masking for filtered microphone input sig-
nal

Instead of utilizing time-frequency masking with micro-
phone input signal, the proposed method utilizes time-
frequency masking with the multi-channel spatially filtered
signal by the unsupervised speech source separation without
the DNN so as to overcome the over-estimation problem of the
covariance matrix. We assume that there are some permutation
errors in y; ;.5 due to the inter-frequency permutation solver.
The proposed time-frequency mask also reduces the inter-
frequency permutation errors by using supervised data. The

covariance matrix of the proposed method is estimated as
follows:

R ===
Zl,j M;

1,50,k

ZM 7‘71lvky]1lykyjlk7 (16)

1,j

where M, ;;; estimates ratio of the i-th speech source in
the j-th output signal y;; at each time-frequency point.
If Wans,ji,k extracts the j-th speech source completely and
reduces the other speech sources, y;; can be approximated
as follows:

Yjlk = Cilk T 05 LET) Lk A7)

where o ;1 is less than 1. Under the mutual independence
assumption of the speech sources, RR; ;, can be approximated
as follows:

R~
> M

1,5,k
1

Zj l M; 0,9,0,k

We further assume that the neural network completely solves
the permutation problem completely and

Mg if i = g(j, k
T

ZMZ gl kCg,l,kal i
(18)

ZM gkl P e g

. ) (19)
0 otherwise

where g is the permutation function. In this case, R; ; can be
written as follows:

R =

H
S VI § M1 k€CilkCi
l

i,l,k
E Mk
zlk

Since | |*< 1, the amount of the over-estimation in R; j
is reduced in Eq. 20 by comparing with Eq. 15. Therefore,
the amount of the upper-bound of the overestimation of R; j
can be reduced by using time-frequency masking for a multi-
channel spatial filtered signal.

(20)

H
Ti,lykri,l,k'

C. Loss function with permutation invariant training

When the time-frequency masking for the microphone input
signal is utilized, distance between the oracle time-frequency
mask and the inferred time-frequency mask is typically utilized
as a loss function of the DNN. However, it is difficult to
define an oracle time-frequency mask for the spatially filtered
signal. Instead, the proposed method utilizes a loss function
which evaluates the output signal after the DNN-based speech
source separation. The proposed method infers the parameter
of the prior PDF, ie., R;; and v;;, via the DNN. By
using the inferred parameter, the negative log posterior PDF,
—log p(e; i klTi ks qS,(CL*)), is obtained. The proposed method
utilizes the negative log posterior PDF as the loss function C.
To calculate the loss function, the utterance-level permutation
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Fig. 2. Neural network structure

invariant training (PIT) [4] is utilized similarly to the conven-
tional supervised speech source separation [5], [11], II is a set
of possible permutations, and C is obtained as follows:

C = min
€1l
rem

l77

H
(Cf(i),l,k - Mi,l,k) Viik (Cfo:),l,k
2n

- Ni,l,k) + log| Vi 1.kl

V. EXPERIMENT
A. Experimental setup

Speech source separation performance of the proposed
method was evaluated. The dataset was made by convolving
measured impulse responses in Multi-channel Impulse Re-
sponse Database (MIRD) [18] with the clean speech sources
in TIMIT speech corpus [19]. In the training phase, TIMIT
train corpus was utilized. In the evaluation phase, TIMIT
test corpus was utilized. Related to impulse responses, the
reverberation time RTgy was set to 0.16 [sec]. The number
of the microphone was set to 2. The number of the speech
sources was set to 2 in each sample. Two microphone indices
were randomly selected for each sample both in the training
phase and in the evaluation phase. In the training phase, a 3-
3-3-8-3-3-3 spacing (cm) microphone array and a 8-8-8-8-8-
8-8 spacing (cm) microphone array were utilized, the distance

and microphones was set to 1 m or 2m. Therefore, a different
microphone array was utilized in the evaluation phase from
the training phase. Sampling rate was set to 8000 Hz. Frame
size was 256 pt. Frame shift was 64 pt. The number of
frequency bins was 129. Azimuth of each talker is randomly
selected for each utterance. The number of total training
utterances was 2000. Mini-batch size was set to 128. Each
utterance was split in every 100-frames segment. Therefore,
length of each data was 100 (frame). Adam optimizer [20]
(learning rate was 0.001) with gradient clipping was utilized.
The proposed architecture contains complex-valued gradient
calculation. Tensorflow [21] was utilized for complex-valued
gradient calculation. Evaluation measures were SDR, SIR
from BSS_EVAL [22], Cepstrum distance (CD), Frequency-
weighted segmental SNR (FWseg.SNR), and PESQ. The pro-
posed method was compared with three unsupervised speech
source separation methods, i.e., 1) Auxiliary-function-based
IVA (Aux IVA) [23]; 2) ILRMA [24], [25]; and 3) local
Gaussian modeling (LGM) [13]. We utilized Aux IVA and IL-
RMA implemented in [26]. We also evaluated two supervised
methods, i.e., 1) Baseline: A time-frequency mask for a multi-
channel microphone input signal is estimated via a DNN. The
input feature is log spectral of the microphone input signal
x;,;, and the phase difference between two microphone input
signals; 2)TFM-Input: A time-frequency mask for a multi-
channel microphone input signal is estimated via a DNN. The
input feature is the same as the proposed method. Output
signal is estimated by multi-channel spatial filtering. In the
unsupervised speech source separation methods, the number
of the iteration for the separation parameter update was 20. In
each supervised method, the DNN parameter was updated by
10000 times.

B. Experimental results

Experimental results when the distance between the speech
sources and the microphones is 1 m are shown in Table I
Experimental results when the distance between the speech
sources and the microphones is 2 m are also shown in
Table II. It is shown that the proposed method achieved the
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TABLE I
EVALUATION RESULTS: DISTANCE IS 1 M

Approaches  SDR SIR CD FWseg. SNR  PESQ
diff. diff. diff. diff. diff.

AuxIVA 6.63 877 -1.13 4.96 0.51
ILRMA 6.73 892  -1.15 5.01 0.55
LGM 745 986  -1.43 5.52 0.64
Baseline 8.61 1049 -1.66 5.88 0.73
TFM-Input  8.80 1096 -1.76 6.26 0.76
Proposed 894 11.13 -1.80 6.29 0.77

TABLE II
EVALUATION RESULTS: DISTANCE IS 2 M

Approaches SDR  SIR CD FWseg. SNR  PESQ

diff.  diff.  diff. diff. diff.

AuxIVA 530 677 -0.85 3.29 0.34

ILRMA 545 698 -0.87 3.47 0.37

LGM 620 7.83 -1.12 4.18 0.46

Baseline 746 881 -1.37 4.55 0.55

TFM-Input ~ 7.68 9.31 -1.54 4.98 0.59

Proposed 778 952 -1.56 5.09 0.60

best performance. The proposed method outperformed the
other supervised methods. Especially, the proposed method
outperformed the TFM-Input method. This result confirmed
that the proposed time-frequency masking for the spatial
filtered signal is effective.

VI. CONCLUSIONS

In this paper, we propose a deep neural network (DNN)
based speech source separation technique. The proposed
method estimates a time-frequency mask for estimating a
multi-channel covariance matrix of a spatial filtered signal. On
contrary to the conventional time-frequency masking for the
microphone input signal, the proposed method is robust against
the over-estimation problem of the multi-channel covariance
matrix. Experimental results show that the proposed method
is effective.
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