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Abstract—In this paper, we present an algorithm for indepen-
dent low-rank matrix analysis (ILRMA) of three or more sources
that is faster than that for conventional ILRMA. In conventional
ILRMA, demixing vectors are updated one by one by the iterative
projection (IP) method. The update rules of IP are derived
from a system of quadratic equations obtained by differentiating
the objective function of ILRMA with respect to demixing
vectors. This system of quadratic equations is called hybrid exact-
approximate joint diagonalization (HEAD) and no closed-form
solution is known yet for three or more sources. Recently, a
method that can update two demixing vectors simultaneously
has been proposed for independent vector analysis. The method
is derived by reducing HEAD for two sources to a generalized
eigenvalue problem and solving the problem. Furthermore, the
pairwise updates have recently been extended to the case of three
or more sources. However, the efficacy of the pairwise updates for
ILRMA has not yet been investigated. Therefore, in this work, we
apply the pairwise updates of demixing vectors to ILRMA. By
replacing the update rules of demixing vectors with the proposed
pairwise updates, we accelerate the convergence of ILRMA. The
experimental results show that the proposed method yields faster
convergence and better performance than conventional ILRMA.

Index Terms—Blind source separation, independent vector
analysis, non-negative matrix factorization, independent low-
rank matrix analysis

I. INTRODUCTION

Blind source separation (BSS) is a technique of estimating
the source signals from a mixture of sources using only
the observed signals without any other information. For de-
termined (number of microphones = number of sources)
and overdetermined (number of microphones > number of
sources) situations, independent component analysis (ICA) [1]
is a fundamental technique. In ICA, a demixing system is esti-
mated by assuming a non-Gaussian source distribution and the
statistical independence of sources. For a convolutive mixture,
frequency-domain ICA (FDICA) [2], [3] has been proposed.
In FDICA, a demixing matrix is estimated at each frequency
bin by applying ICA to a short-time Fourier transform (STFT)
representation of the observed signals. To extend FDICA to
a multivariate case, independent vector analysis (IVA) has
been proposed [4], [5]. Furthermore, auxiliary-function-based
ICA (AuxICA) [6] and auxiliary-function-based IVA (Aux-
IVA) [7], [8] have also been proposed. Traditionally, in IVA,
demixing matrices are updated by the gradient-based method.
The gradient-based update rules have tuning parameters such
as step size and a trade-off between convergence speed and
stability. By contrast, in AuxICA and AuxIVA, there are

no tuning parameters, and the monotonic nonincrease in the
objective function is theoretically guaranteed. Moreover, the
auxiliary-function-based BSS techniques proved to be more
stable and faster than the gradient-based methods.

As a state-of-the-art BSS method, independent low-rank
matrix analysis (ILRMA) has recently been proposed [9]. In
ILRMA, a low-rank matrix model of the spectrogram obtained
from each source is assumed, and ILRMA can be interpreted
as the method that unifies AuxIVA and multichannel non-
negative matrix factorization (MNMF) [10]–[17]. In ILRMA,
the demixing matrices are estimated by updating two param-
eters alternately; the demixing matrix and NMF parameters.
ILRMA can achieve better performance than AuxIVA and is
more stable than MNMF.

In most studies of ILRMA, the row vectors of the demixing
matrix (demixing vectors) are updated one by one by the
iterative projection (IP) method first proposed for AuxICA
and AuxIVA [8]. This update rule is derived by solving
systems of quadratic equations obtained by differentiating
the cost function of ILRMA with respect to the demixing
vectors. The systems of quadratic equations are called hybrid
exact-approximate joint diagonalization (HEAD) [18], and no
closed-form solution for three or more sources is yet known.
For AuxIVA with two sources and two microphones, a faster
algorithm has been proposed for updating the two demixing
vectors simultaneously by solving a generalized eigenvalue
problem [19], [20]. This pairwise update method is also
applicable to pairs of demixing vectors in the case of three
and more sources [21]. It has been shown to lead to faster
convergence and better performance than methods using one-
by-one updates.

On the basis of these studies, we propose a faster algorithm
for ILRMA with pairwise updates of demixing vectors for
three or more sources. We also investigate the difference in
convergence speed between the IP and proposed methods
by comparing the achieved values of the objective function.
The experimental results showed that the proposed method
outperformed conventional ILRMA in terms of convergence
speed and the overall performance.

The rest of this paper is organized as follows. In Section II,
we formulate the multichannel BSS problem and describe
conventional ILRMA. In Section III, we present the proposed
method and its algorithm. In Section IV, we show the experi-
mental results and discuss a few implications of the proposed
method. Finally, in Section V, we present our conclusions.
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II. BACKGROUND

A. Formulation

Let K and M be the numbers of sources and microphones,
respectively. In this paper, henceforth, we consider the deter-
mined case, K = M . We define the STFT representations
of the source, observed, and estimated signals, respectively as
follows:

sfτ =
[
s1,fτ · · · sk,fτ · · · sK,fτ

]⊤ ∈ CK×1, (1)

xfτ =
[
x1,fτ · · · xk,fτ · · · xK,fτ

]⊤ ∈ CK×1, (2)

yfτ =
[
y1,fτ · · · yk,fτ · · · yK,fτ

]⊤ ∈ CK×1, (3)

where f ∈ {1, . . . , F}, τ ∈ {1, . . . , T}, and k ∈
{1, . . . , K} are the indices of frequency bins, time frames,
and channels, respectively, and ⊤ denotes the vector/matrix
transpose. When the STFT window is sufficiently longer
than the impulse response, we can represent the observed
signal xfτ as xfτ = Afsfτ , where Af ∈ CK×K is
a mixing matrix. If Af is invertible, we can define the
demixing matrix Wf =

[
w1,f · · · wK,f

]H
= A−1

f , where
wk,f ∈ CK×1 (k = 1, . . . , K) are the demixing vectors and
H denotes the Hermitian transpose. Therefore, the estimated
signal yfτ can be represented as

yfτ = Wfxfτ . (4)

B. ILRMA

As introduced earlier, ILRMA is a determined BSS tech-
nique unifying IVA and NMF. In ILRMA, the demixing
matrices are updated under the assumption that the complex
spectrogram from the kth estimated signals is represented as
the product of two non-negative matrices, Bk ∈ RF×L

+ and
Hk ∈ RL×T

+ where Bk and Hk are the basis and activation
matrices, respectively, and R+ denotes the set of non-negative
real numbers. To estimate source model parameters Bk and
Hk, we assume the source model to be a complex Gaussian
distribution. In other words, the generative model of the kth
source and its variance rk,fτ are

p(ȳ1,τ , . . . , ȳk,τ ) =
∏
k,f

1

πrk,fτ
exp

(
−|yk,fτ |

2

rk,fτ

)
, (5)

rk,fτ =
∑
l

bk,fℓ hk,ℓτ , (6)

where ȳk,τ is the estimated vector that cosists of all frequency
bins defined as ȳk,τ =

[
yk,1τ · · · yk,Fτ

]⊤
, bk,fℓ ∈ R+ and

hk,ℓτ ∈ R+ are the (f, ℓ)th element of Bk and (ℓ, τ)th element
of Hk, respectively, and ℓ ∈ {1, . . . , L} denotes the index of
the bases. Fig. 1 illustrates the overview of ILRMA.

Next, by using the demixing model (4) and the source
model (5), and calculating the negative log-likelihood of the

demixing matrices
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Fig. 1: Overview of source separation in ILRMA (e.g., K =
2).

observed signals, we obtain the objective function of ILRMA
as follows:

J (W, B, H) =
∑
k,f,τ

[
|wH

k,fxfτ |2

rk,fτ
+ log rk,fτ

]
− 2T

∑
f

log|detWf |, (7)

where W, B, and H are the tensors composed of all Wf , Bk,
and Hk, respectively. In this paper, the constant terms are
omitted.

1) Update of the spatial model: To minimize the objective
function (7) with respect to the demixing matrix Wf , we
obtain the following function Q by extracting terms that are
dependent on W from (7):

Q(W, U) =
∑
k,f

wH
k,fUk,fwk,f −

∑
f

log|detWf |, (8)

Uk,f =
1

T

∑
τ

1

2rk,fτ
xfτx

H
fτ , (9)

where Uk,f ∈ CK×K and U are the covariance matrix and
the tensor composed of all Uk,f , respectively. Henceforth, we
omit the frequency bin index f for simplicity.

By calculating ∂Q/∂wk = 0 (k = 1, . . . , K) and rear-
ranging it, we can obtain the following system of quadratic
equations:

wH
ℓ Ukwk = δℓk (k, ℓ = 1, . . . , K), (10)

where δℓk is the Kronecker delta. The problem in (10) is
HEAD [18], and no closed-form solution for K ≥ 3 is known
yet [21]. Instead of solving HEAD directly, let us consider
minimizing (8) with respect to only one demixing vector wm

while keeping the other wk (k ̸= m) fixed. In this case, the
problem can be solved as follows [8]:

wm ← (WUm)
−1

em, (11)

wm ← wm(wH
mUmwm)

− 1
2 , (12)

where em ∈ RK denotes the canonical basis vector with the
mth element unity. This method is called IP [9]. In this paper,
we refer to this IP method as IP-1 to distinguish it from the
proposed method described in Section III.
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2) Update of the source model: By applying the auxiliary
function method [7] to (7), we can obtain multiplicative update
rules for the source model parameters Bk and Hk [9], [14]:

bk,fℓ ← bk,fℓ

[∑
τ |yk,fτ |

2
hk,ℓτ (

∑
ℓ′ bk,fℓ′hk,ℓ′τ )

−2∑
τ hk,ℓτ (

∑
ℓ′ bk,fℓ′hk,ℓ′τ )

−1

] 1
2

,

(13)

hk,ℓτ ← hk,ℓτ

[∑
f |yk,fτ |

2
bk,fℓ(

∑
ℓ′ bk,fℓ′hk,ℓ′τ )

−2∑
f bk,fℓ(

∑
ℓ′ bk,fℓ′hk,ℓ′τ )

−1

] 1
2

.

(14)

III. PAIRWISE DEMIXING VECTOR UPDATES

A. Pairwise update rules for two sources

In the case of K = 2, a closed-form solution of HEAD
exists; namely, the two demixing vectors w1 and w2 are the
solutions of the following generalized eigenvalue problem:

U2uk = λkU1uk (k = 1, 2), (15)

where λ1 and λ2 are the eigenvalues such that λ1 ≥ λ2 cor-
responding to u1 and u2, respectively. By using these u1 and
u2 with appropriate normalization as written in (21) below, we
can simultaneously update the demixing vectors [19], [22].

Recently, this pairwise update method has been extended
to the situation where K ≥ 3 for AuxIVA [21]. We aim to
apply this pairwise update method to ILRMA to accelerate the
update of demixing vectors.

B. Pairwise update rules for three or more sources

First, we give an outline of the method proposed in [21]. In
the case of K ≥ 3, let us consider how to update two demixing
vectors wm and wn (m ̸= n) simultaneously while keeping
the other (K − 2) demixing vectors wk (k ̸= m,n) fixed. By
calculating ∂Q/∂wm = 0 and ∂Q/∂wn = 0 (m ̸= n), we
can obtain the following systems of 2K quadratic equations:

wH
mUmwm = 1, wH

mUnwn = 0, (16)

wH
nUmwm = 0, wH

nUnwn = 1, (17)

wH
k′Umwm = 0, wH

k′Unwn = 0 (∀k′ ̸= m, n). (18)

The pairwise update rule is derived by solving (16)–(18) as
follows [21]:

Pm ← (W̃ Um)
−1

Emn Pn ← (W̃ Un)
−1

Emn, (19)

Vm ← P H
mUmPm Vn ← P H

n UnPn, (20)

vm ← vm(vH
mVmvm)

− 1
2 vn ← vn(v

H
nVnvn)

− 1
2 , (21)

wm ← Pmvm wn ← Pnvn, (22)

where W̃ is the demixing matrix obtained in the previous
update, Emn is a K×2 matrix defined as Emn =

[
em en

]
,

and vm and vn are the eigenvectors of V −1
n Vm corresponding

to larger and smaller eigenvalues, respectively. We refer to this
update as IP-2.

Fig. 2 shows an overview of the difference between IP-1
and IP-2. We can interpret IP-2 as the process by which two
steps are updated in IP-1 simultaneously.
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Fig. 2: Illustration of IP-1 and IP-2 when K = 3.

Algorithm 1: ILRMA using IP-2

1 Initialize Wf ∀f ∈ {1, . . . , F}
2 forall k = 1, . . . , K, K + 1, . . . , 2K do
3 m← k mod K
4 n← (k + 1) mod K
5 Update source model parameters Bm, Bn and

Hm, Hn using (13) and (14).
6 Update source models rm,fτ and rn,fτ using (6).
7 Update covariance matrices Um and Un using (9).
8 Update two demixing vectors wm and wn

using (19)–(22).

Therefore, we can obtain a new ILRMA by replacing the
conventional update rule of demixing vectors by this method,
as shown in Algorithm 1. Henceforth, we refer to the new
ILRMA as FasterILRMA. Note that the choice of m and n in
the proposed method is arbitrary as long as m ̸= n.

IV. EXPERIMENTS

To confirm the efficacy of the proposed method, we first
compared the convergence of the objective function when
using the conventional method with that for the proposed
method. Next, we conducted a BSS experiment and evaluated
the separation performance.

A. Experimental setup

We conducted experiments for music and speech signals.
For the music signals, we used the DSD100 dataset [23],
which includes 100 stereo recorded signals that consist of
four parts: bass, drums, other, and vocals. We excluded
other because they might include multiple instruments. To
obtain monaural sources, we extracted the left channel of
bass, drums, and vocals. The original sampling rate was
44.1 kHz, but we downsampled the signals to 16 kHz.

For the speech signals, we used the mixture speech of
four speakers obtained from the Japanese Newspaper Article
Sentences (JNAS) dataset [24]. The sampling rate was 16 kHz.

We used the pyroomacoustics Python package [25] to
simulate a rectangular room and create convolutive mixtures.
Fig. 3 shows the room used for the simulation and the locations
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Fig. 3: Setup of experiment.

TABLE I: Parameters of the simulation.

Number of bases L 2, 5, 20
Length of FFT and window function 4096 samples
Frame shift of STFT 2048 samples
Initial demixing matrices Wf Identity matrix
Number of iteration steps 100
STFT window function Hamming

of sources and the microphone array. The reverberation time
was approximately 200 ms. The number of sound sources and
microphones was three for the music signals and four for
the speech signals, respectively. The microphone array was
uniformly linear, with a spacing of 2.83 cm. Moreover, for
numerical stability, we set the initial values of the source
models Bk and Hk to 0.9Z + 0.1I where Z and I are
the matrix of values uniformly distributed over [0, 1) and the
matrix of ones, respectively. Table I shows the rest of the
parameters common in both types of signal.

B. Comparison of convergence of objective function

We compared the convergence of the objective function
using the conventional ILRMA with that using the Faster-
ILRMA. Fig. 4 shows an example of the evolution of the
objective function for one of the music signals. As shown
in Fig. 4, the objective function decreased monotonically in
both methods, but the proposed method converged much faster
and decreased the objective function to a greater extent than
the conventional method. This result implies that the two
respective methods may converge to a different local minimum
of the objective function of ILRMA. This will be investigated
in detail in our future work.

C. Separation performance

To avoid bias from a specific arrangement of sources, we
performed experiments for all K! permutations of sources in
each mixture. Then, we calculated the scale-invariant signal-
to-distortion ratio (SI-SDR) improvements [26] for all sources
in all mixtures and averaged them. We compared the two
methods: conventional ILRMA [9] and FasterILRMA. The
results for the music and speech signals are shown in Figs. 5
and 6, respectively. For music signals, FasterILRMA achieved
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Fig. 4: Values of objective function with conventional and
proposed methods.

significantly better performance and faster convergence than
conventional ILRMA for all Ls, as shown in Fig. 5. For
speech signals, FasterILRMA also outperformed conventional
ILRMA for most Ls, as shown in Fig. 6. In particular,
FasterILRMA achieved the best performance for L = 2,
whereas the SI-SDR of conventional ILRMA decreased as L
increased. This result is consistent with that described in [9].

An existing work [27] reported that the separation perfor-
mance of ILRMA tends to be improved by slowing down the
update of the source models. We consider that the proposed
method improved the separation performance in a similar way
because we accelerated the updates of the spatial models in
this study, which made the update of the source models slower
relatively.

V. CONCLUSION

We proposed a new algorithm for ILRMA to accelerate
the convergence for three or more sources by updating two
demixing vectors simultaneously. The experimental evaluation
of BSS showed that the proposed FasterILRMA achieved
better performance and faster convergence than conventional
ILRMA. This result implied that these two methods might
converge to a different local minimum of the objective function
of ILRMA. In our future work, we will further investigate
why the pairwise update of the demixing vectors (IP-2) yields
better performance than the sequential update of the demixing
vector (IP-1). We will also apply the proposed method to other
BSS methods that use IP, such as ILRMA with generalized
Kullback–Leibler divergence [28] and independent deeply
learned matrix analysis [29].
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