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Abstract—In this paper, we propose a method of removing a
known interference from a monaural recording. Generally, the
elimination of a nonstationary interference from a monaural
recording is difficult. However, if it is a known sound, such
as the ringtone of a cell phone, radio and TV broadcasts, and
commercially available music provided by a CD or streaming,
their signals can be easily obtained. In our proposed method,
we define such interference as an acoustic object. Although the
sampling frequencies of the recording and the available acoustic
object might be mismatched, we compensate the mismatch and
remove the acoustic object from the recording by maximum
likelihood estimation using the auxiliary function technique.
We confirm the effectiveness of our method by experimental
evaluations.

Index Terms—noise suppression, noise canceller, acoustic ob-
ject, sampling frequency mismatch, auxiliary function

I. INTRODUCTION

Unlike multichannel recording, to which various array
signal processing techniques can be applied, it is generally
challenging to remove nonstationary noise from a monaural
recording. Some algorithms [1]—[3] for noise suppression are
based on the estimation of a noise power spectrum, but the
accuracy of noise estimation is imperfect. However, if the
interference is a known sound, such as the ringtone of a cell
phone, radio and TV broadcasts, and commercially available
music provided by a CD or streaming, their signals can be
easily obtained. In our study, we define such interference as
an acoustic object and focus on it. We treat it as a new channel
and remove it from a monaural recording with high precision
by an array signal processing method. However, the sampling
frequencies of the recording and the available acoustic object
can be mismatched. An asynchronous microphone array [4]-
[8], which consists of independent recording devices, also has
a sampling frequency mismatch. Such a mismatch degrades
the performance of signal processing [4], [9], [10]. Thus, a
method of compensating for the sampling frequency mismatch
has been proposed [4], [11]-[15] for asynchronous microphone
arrays. In this study, the monaural recording and the acoustic
object are treated as components of an asynchronous micro-
phone array, and we use techniques that compensate for the
sampling frequency mismatch [12], [13]. Then, the frequency
response of the acoustic object is determined by the maximum
likelihood estimation using the auxiliary function method,
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also known as the majorization minimization (MM) algorithm
[16], so the acoustic object is removed from the recording.
We confirm the effectiveness of our proposed method by
experimental evaluations.

II. PROBLEM FORMULATION

Suppose a situation that we record sound by a monaural
microphone, but a known signal interferes with the recording.
A typical situation is recording speech interfered with by
the background music. Let x(t) be a recorded signal that is
modeled by

x(t) = o(t — tq) * h(t) + s(t), (1)

where o(t), h(t), and s(t) are a known signal, the impulse
response from the source of o(t) to the microphone, and a
remaining component, respectively. All the signals are rep-
resented in the continuous time domain. The objectives of
this study are to remove the contribution of o(t) from x(t)
and to estimate s(t) under the assumption that o(t) is known.
Hereafter, we refer to o(t) and s(t) as the acoustic object signal
and the target signal, respectively. The variable ¢4 indicates the
time difference between xz(t) and o(¢).

Since the acoustic object signal o(t) and the recorded signal
x(t) are sampled by different analog-to-digital converters,
there can be a mismatch of the temporal position and the
sampling frequencies mainly caused by the individual vari-
ability of the quartz in their clock generators. Let x[n] and
o[n] be the discrete-time representation of the recorded signal
and the acoustic object signal, respectively. We assume that the
analog-to-digital converters used to obtain z[n] and o[n] have a
common nominal sampling frequency, but the actual sampling
frequencies have a small mismatch that is represented as an
unknown dimensionless time-invariant scalar €, (Je,| < 1).
Then, z[n] and o[n] can be expressed as

dl=e(f)=e(mor) @
ofn] = 0 (J’Z) , 3)

where f, and f, indicate the sampling frequencies of the
recorded and acoustic object signals, respectively.
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Fig. 1. Overview of procedures in proposed acoustic object canceller.

III. AcousTic OBJECT CANCELLER

In our study, we propose a framework for removing the
acoustic object signal from the recorded signal. This problem
is similar to echo canceller and noise canceller in the sense that
the interference signal is available. However in our problem,
we assume that the recorded signal and the acoustic object
signal are recorded by different microphones. In this sense,
this is a kind of an asynchronous microphone array.

Generally, an asynchronous microphone array consists of
asynchronous multichannel signals recorded by multiple indi-
vidual recording devices. It has a problem that the performance
of array signal processing, including blind source separation,
is significantly degraded [4], [9], [10] because the recording in
each channel is not synchronized by the difference of the start
of the recording and the sampling frequency mismatch. For
such a problem, Miyabe et al. have proposed a blind synchro-
nization technique of sampling frequencies [12]-[14]. In this
research, we apply the above-mentioned blind synchronization
technique.

Figure 1 shows an overview of procedures in proposed
acoustic object canceller. First, we synchronize between the
recorded and acoustic object signals by a rough time shift.
Next, the blind compensation for the sampling frequency
mismatch is applied to the time-shifted acoustic object signal.
Finally, we determine the frequency response of the acoustic
object signal by maximum likelihood estimation using the
auxiliary function approach and remove the acoustic object
signal from the recorded signal using the frequency response.

A. Time shift compensation

The accurate estimation of the time difference t4 in Eq. (1)
is not always easy under the sampling frequency mismatch.
However, the estimation does not have to be perfectly correct
because the small estimation error can be compensated for
through the estimation of the frequency response, as will
be described in Sec. III-C. We are assuming |¢,| < 1, so
z[n] and o[n] have a sufficiently high correlation without the
compensation for the sampling frequency mismatch. Thus, the
discrete time difference 7 is estimated simply by maximizing
the cross-correlation between x[n| and o[n] as

7 = argmax {Z oln — T}x["]} :

T
n

“4)

Then, we define the time-shifted version of o[n| as o[n] =
oln — 7J.

B. Sampling mismatch compensation

The sampling frequency mismatch compensation technique
has been proposed in [12], [13]. By using this technique,
we synchronize the sampling frequencies of the monaural
recording x[n] and the time-shifted acoustic object signal
6[n]. We use the same assumptions and approximations as
those in the application of sampling mismatch compensation
in [17], [18]. On the basis of the assumptions that the sources
do not move and are stationary, and the approximation that
the time-varying time difference between channels caused
by the sampling frequency mismatch is constant within a
time frame, the sampling frequency mismatch €, is compen-
sated for by a linear phase shift in the short-time Fourier
transform (STFT) domain. The sampling frequency mismatch
€, 1s estimated by maximizing the likelihood of the model
where the compensated STFT representations follow the time-
invariant multivariate Gaussian distribution. The estimation of
the sampling frequency mismatch can be iteratively performed
to improve the accuracy. The signal processing is detailed in
[12], [13].

C. Estimation of frequency response via auxiliary function
technique

From Eq. (1), when the length of the impulse response h(t)
is sufficiently smaller than the frame length of STFT, the target
signal can be estimated in the STFT domain as

S(wam) = X(wvm) - O(wvm;eo)H(w)v (5
where H (w) is the frequency response of the acoustic object
signal and O(w,m;e,) is the STFT representation of the
acoustic object signal after the sampling frequency mismatch
is compensated as described in the previous subsection. Since
H(w) is the only unknown factor in Eq. (5), we focus on how
to estimate it.

In this study, we assume that S(w,m) follows the zero-
mean symmetric complex generalized normal distribution, the
frequency response H(w) is time-invariant, and S(w, m) and
O(w,m; €,) are uncorrelated. The probability density function
of the zero-mean symmetric complex generalized normal
distribution is shown as

o) = _ B —ale)® ©)

2aT(1/8)
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where « and [ are the scaling and shape parameters, respec-
tively. It includes a complex normal distribution when 5 = 2
and a complex Laplace distribution when 8 = 1. Hereafter,
we consider 0 < 8 < 2 that corresponds to super Gaussian
distribution.

Based on these assumptions, H(w) is estimated by maxi-
mizing the following log likelihood function:

log L(H (w)) = fiﬂ > " I8(w,m)|? + Const.,  (7)

m

where Const. is a parameter-independent constant. Note that,
in the case of 8 = 2, maximizing Eq. (7) is equivalent
to minimizing the power of the residual signal S(w,m),
which has been commonly used in the conventional echo
canceller and noise canceller. Since the optimization problem
to maximize Eq. (7) in terms of H(w) has no closed-form
solutions in the case of 5 # 2, we solve it iteratively by
applying the auxiliary function method.

In the auxiliary function method, it is necessary to find
an appropriate auxiliary function for the objective function.
According to the theorem described in [19], for the continuous
and differentiable even function G(z) of z, if G'(z)/x is
continuous, = > 0, positive, and monotonically decreasing,

M;ﬂ 4 (G (z0) — mOG;(xO)> (8)

holds for any x, and the equality condition is * = Fz. The
function of = appeared in the first term of Eq. (7) satisfies
the condition of G(x) when 0 < 8 < 2; thus, the auxiliary
function Q(H (w), Ho(w)) can be derived as

B|So(w, m)|#~2
2

G(z) <

21‘0

|S(w,m)|* + Const.,
©))

where So(w,m) = X (w,m) — O(w, m; €,) Ho(w) and Ho(w)
denotes an auxiliary variable. Equation (9) is a quadratic
function of H(w) since S(w,m) includes H(w); thus, we can
minimize it by differentiating about H(w) and setting Ho(w)
to H(w)®*). The update formulae of S(w,m) and H(w) are
given by

Q(H (w), Ho(w)) =

S(w,m)® = X (w,m) — O(w, m; e) H(w)®, (10)
m)

[ (w) kD) = > om OA*(WA, m;€0) X (w A/‘ (w7m)(k)|ﬁ727
S [0(w, m; €0)[2/]S(w, m)(#)| 32

(11)

where {-}* indicates the complex conjugate operator. By

applying these updates sufficiently, the estimated target signal
S(w,m) is obtained as S(w, m)®).

IV. EXPERIMENTAL EVALUATIONS

To confirm the effectiveness of the proposed method, the
performance of removing the acoustic object signal was
objectively evaluated from the following two perspectives:
(1) with/without the compensation for the sampling frequency
mismatch and (ii) the change in the shape parameter 3.

A. Experimental conditions

We conducted the experiments for both simulated and
real-recorded data. For making simulated data, we used Py-
roomacoustics [20]. A 4.1 x 3.8 x 2.8 m?® virtual room was
considered and the room absorption was set to 0.2, which
corresponds to Tgo of 0.18 s. Figure 2 shows the arrangement
of the loudspeakers and the microphone. The target signal and
acoustic object signal were played from loudspeakers (A) and
(B), respectively.

As a target signal, we used the speech signal that was
made by the concatenation of word utterances chosen from the
Japanese Newspaper Article Sentences (JNAS) corpus [21].
The acoustic object signals were the following three types of
music: Solo, Ensemble, and Chorus, which are violin solo part
of Sonata No. 5 in F major Op. 24, String Quartet No. 14 in
G major K. 387, and Chorus (a cappella) of Natsu no omoide
composed by Y. Nakada, respectively. They were chosen from
SMILE 2004 sound database [22].

For the performance evaluation, we defined the input SNR
and output SNR by 10log,(}",, s[n]?)/ (32, (o[n] * h[n])?),
101ogy0(>,, s[n)?)/ (32, (8[n] — s[n])?), respectively, where
the summation of n was taken for the time period when either
the target signal or the acoustic object signal is not silent.
The target signal and the acoustic object signal were mixed
at —5,0,5, and 10 dB of input SNRs. The original sampling
frequencies of the recorded signal and acoustic object signal
were 16,000 Hz, and the sampling frequency mismatch was
simulated by resampling the recorded signal from 16,000
to 16,001 Hz. For STFT, the fast Fourier transform (FFT)
was performed at 8,192 points with 4,096 length Hamming
window, and a shift length was half of the window length. The
number of iterations of Eq. (11) was set to 10. To confirm the
contribution of the introduced zero-mean symmetric complex
generalized normal distribution, the various shape parameter
B from 0.2 to 2.0 in steps of 0.2 was used.

In a real-environment experiment, the loudspeakers and a
microphone were installed in a laboratory environment of 4.1 x
3.8 x 2.8 m? as shown in Fig. 2. We recorded the target signal
and the acoustic object signal separately, and synthesized the
recorded signal generated by mixing the recorded target signal
and recorded acoustic object signal at —5,0,5, and 10 dB of
input SNRs. The sampling frequency of the microphone was
16,000 Hz, and the other conditions were the same as the
previous simulation experiment.

B. Experimental results

We objectively evaluated the effectiveness of the acoustic
object signal with output SNR (Figs. 3 and 4). The bar graph
corresponds to 8 = 0.2,0.4,---,2.0 from the left. The white
and shaded bars indicate the output SNR obtained from the
proposed method with/without the blind synchronization of
the sampling frequency mismatch [Sync. (on) and Sync. (off)],
respectively. From the results of both experiments, the output
SNR was significantly improved by applying the sampling
frequency mismatch compensation. While, the output SNR
was almost not improved without the sampling frequency
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Fig. 2. Locations of loudspeakers and microphone in simulation and record-
ing. Loudspeakers (A) and (B) are for target speech and acoustic object.

mismatch compensation. The reason is that if there is a
sampling frequency mismatch, the frequency response will
not be apparently time-invariant, and the model expressed
by Eq. (5) will not hold. Moreover, it is confirmed that the
shape parameter 3 to obtain the maximum output SNR differs
depending on the type of the acoustic object signal and the
input SNR. Therefore, using the proposed method is a more
flexible model than assuming a complex normal distribution
and a complex Laplace distribution; thus, we can obtain a
higher output SNR to select the appropriate 5. The output
SNR in the real environments was slightly lower than that in
the simulation. It might be caused by the nonlinearity of the
loudspeaker.

Figure 5 shows the examples of spectrograms of (a) the
recorded signal generated by adding Solo with 10 dB in
the simulation, (b) the target signal, and (c) and (d) esti-
mated target signals with/without blind compensation sam-
pling frequency mismatch. The shape parameter was set to
0.8, which provided the highest output SNR in the previous
experiment. By focusing on the area surrounded by broken
lines in Fig. 5, we can see that the acoustic object signal
(harmonic components of the violin) was almost removed
by the proposed method with the blind compensation for the
sampling frequency mismatch (Fig. 5(c)) compared with the
one without the compensation (Fig. 5(d)).

V. CONCLUSION

In this study, we proposed a method of removing the
acoustic object signal from the recorded signal containing the
acoustic object signal with high accuracy. In the experiments,
we confirmed the output SNR to be high using various sounds
in the simulation and real environments. In the future, we
plan to simultaneously remove multiple acoustic object signals
when those signals are played. In addition, we plan to conduct
experiments considering the case where the target signal is
music or from multiple speakers. In this study, we did not
consider the effect of the nonlinearity of the loudspeaker. We
will take it into account in future work.
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Fig. 3. Output SNR with simulated data using different 3 values. 3 increases from 0.2 to 2.0 in steps of 0.2 from left to right.
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Fig. 4. Output SNR with recorded data using different 3 values. 8 increases from 0.2 to 2.0 in steps of 0.2 from left to right.
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Fig. 5. Spectrograms of (a) recorded signal (target signal was generated by adding Solo with 10 dB SNR), (b) target signal, and (c) and (d) estimated target
signal with/without blind compensation sampling frequency mismatch, respectively.
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