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Abstract—During labor, fetal heart rate (FHR) is monitored
externally using Doppler ultrasound. This is done continuously,
but for various reasons (e.g., fetal or maternal movements) the
system does not record any samples for varying periods of time.
In many settings, it would be quite beneficial to estimate the
missing samples. In this paper, we propose a (deep) Gaussian
process-based approach for estimation of consecutively missing
samples in FHR recordings. The method relies on similarities
in the state space and on exploiting the concept of attractor
manifolds. The proposed approach was tested on a short segment
of real FHR recordings. The experimental results indicate that
the proposed approach is able to provide more reliable results in
comparison to several interpolation methods that are commonly
applied for processing of FHR signals.

Index Terms—Fetal heart rate, deep Gaussian processes, at-
tractor, state space, consecutively missed samples

I. INTRODUCTION

The fetus depends on the mother for placental exchange of
oxygen and carbon dioxide, which relies on adequate mater-
nal blood gas concentrations, uterine blood supply, placental
transfer and fetal gas transport. During labor, disruption of any
of these can cause fetal hypoxia, which, despite compensatory
mechanisms, may lead to acidosis which in turn may cause
permanent brain damage or even death of the fetus [1].
The aim of fetal monitoring is to alert obstetricians of such
challenges or risks for appropriate and timely intervention
[2]. The most widely adopted approach of fetal monitoring
during labor is by Cardiotocography (CTG) in which both fetal
heart rate and uterine activity signals are recorded and then
visually inspected by clinicians [3]. Despite the availability
of clinical guidelines regarding FHR evaluation from both the
National Institute of Child Health and Human Development
(NICHD) and the International Federation of Gynecology
and Obstetrics (FIGO) [4], [5], the interpretation of FHR
demonstrates high intra- and inter-observer variability due
to the subjectivity in visual inspections and complexity of
CTG recordings [6]. Therefore, many efforts have been made
in automated or computerized analysis of FHR recordings.
Computerized methods, equipped with data-driven machine
learning techniques, are capable of extracting features and
discovering patterns that cannot be seen or interpreted by
naked eyes.
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Fig. 1. A segment of un-preprocessed (raw) FHR recording.

One of the hallmarks of FHR recordings obtained externally
using Doppler ultrasound is the common existence of missing
samples, as shown in Fig. 1, which are often caused by, e.g.,
fetal or maternal movements and misplaced electrodes. Empir-
ically, the percentage of missing samples varies from 0-40%
and 0-10% for external Doppler ultrasound measurements and
internal direct fetal electrocardiogram (FECG), respectively.
Although FECG can provide more accurate measurements, in
practice, the FHR recordings are usually obtained externally
using Doppler ultrasound techniques because of their non-
invasive nature. It is worth noting that there are still no guide-
lines on what percentage of missing samples will disqualify an
FHR recording from visual inspection or from computerized
analysis. Although the high percentage of missing samples
can be tolerated by obstetricians because of the robustness
of human visual perception, computerized analysis requires
proper handling of such distortions. In [7], the authors showed
that the values of various popular FHR features can change
dramatically if the missing samples are not properly estimated
or addressed.

In the literature, the estimation of missing FHR samples are
often addressed using methods based on sparse representation
and dictionary learning, where the sparse coding step and
dictionary update step are applied in an alternating fashion
until convergence [8], [9]. However, such methods usually
exploit linear transformations while the underlying relationship
may be better modeled by non-linear transformations. More
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Fig. 2. A histogram of the length of consecutively missing samples, i.e., gap
length, in the open access intrapartum cardiotocography database described
in [11].

importantly, such methods are not able to provide estimation
results within a probabilistic framework, instead, only point
estimates of missing samples are provided. In our previous
work [10], we proposed a Gaussian processes-based method
for estimation of missing FHR samples, where the time
instants of missing samples were assumed to have a uniform
distribution. However, in reality, the missing samples are more
likely to occur in a consecutive manner, i.e., in the form
of bursts. In Fig. 2, we present a histogram of the length
of consecutively missing FHR samples obtained from an
open access intrapartum cardiotocography database [11]. We
observe that the most frequently occurring gap length is 5.

In this paper, we propose a (deep) GP-based method that
is capable of utilizing attractor manifolds for the estimation
of consecutively missing samples in FHR recordings. The
underlying idea is that by incorporating an attractor manifold,
the proposed approach is able to utilize not only the correlation
in time but also the similarity in state space, which can
benefit the estimation of consecutively missing samples in
FHR recordings. We first validated the ability of the GP-
based model for attractor reconstruction on a Lorenz system,
where the ground truth attractor manifold is accessible. Then
the GP-based model was tested on a short segment of a real
FHR signal. The results indicate that the GP-based approach
perform better than benchmark models that are commonly
applied for gap treatment in automated FHR analysis.

II. BACKGROUND

A. Open Access CTG Database

In this work, we utilized an open access intrapartum CTG
database from the Czech Technical University in Prague and
the University Hospital in Brno, which has 552 CTG record-
ings where both FHR and UA signals are sampled at 4Hz. The
CTG recordings were carefully selected from 9164 recordings
collected between year 2010 and 2012 using various criteria,
including, singleton pregnancy, gestational age more than 36
weeks and no a priori known developmental defects, etc. The
details about this database are available in [11].

B. State Space Reconstruction

The concept of state space or phase space, which is a
space where all the possible states of a studied system are
represented, is fundamental in dynamical system modeling.
However, often the phase space and the mathematical descrip-
tion of a dynamical system are unknown. Many efforts have
been made in developing attractor reconstruction methods in
order to reconstruct the phase space of a system. To that end,
Takens’ theorem, proposed by Floris Takens in [12], is of great
importance. It provides theoretical guarantee that, generically,
the information about the hidden states of a dynamical system
can be reconstructed from a single observation variable of the
system, when the stated conditions in the theorem are satisfied.
Next, we state the theorem:

Theorem 1 (Takens’ theorem): Let M be a compact man-
ifold of (integer) dimension d. Then for generic pairs (φ, y),
where
• φ :M→M is a C2-diffeomorphism of M in itself,
• y :M→ R is a C2-differentiable function,

the map Φ(φ,y) :M→ R2d+1 given by

Φ(φ,y)(x) :=
(
y(x), y(φ(x)), y(φ2(x)), . . . , y(φ2d(x))

)
is an embedding of M in R2d+1.

The most common choice of φ is a delay by a constant τ . A
fundamental contribution of Takens’ theorem is the claim that
for a reliable reconstruction of a manifold M of dimension
d, it is sufficient to have a delay embedding of dimension
E = 2d+1. We point out that in reality the true manifold M
that is responsible for generating the data is usually latent. As a
result, we do not have any knowledge about its true dimension
d (or E = 2d + 1). Furthermore, theoretically speaking, τ is
a free parameter that can be arbitrarily selected. Nevertheless,
in practice, because the length of the time series, i.e., number
of observations, is finite, the value of τ will actually affect
the quality of attractor reconstruction. If τ is too small, each
dimension will be strongly correlated. On the other hand if
τ is too large, we will lose information about the underlying
dynamical system. In practice, E and τ are often selected
using false nearest neighbours [13] and mutual information-
based method described in [14], respectively, which are of grid
search nature and not principled.

C. Gaussian Processes

A GP is a stochastic process with every finite collection
of random variables having a multivariate normal distribution
[15]. Essentially it extends a multivariate Gaussian distribution
to infinite dimensionality. Therefore, a GP can be seen as a
distribution of a real-valued function f(x) in which x denotes
the input, which is usually a vector. In the machine learning
literature, GPs provide powerful and flexible Bayesian non-
parametric framework for modeling functions and mappings,
and they have been successfully applied in both supervised and
unsupervised learning [16]. Similar to Gaussian distributions,
a GP is completely specified by its mean function m(x) and
covariance function kf (x,x′), which are defined by m(x) =
E[f(x)], and kf (x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))].
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To reduce the number of hyperparameters, a GP is often
assumed to be zero mean. The GP framework frees us from
assuming specific analytical form of the latent function and
provides proper uncertainties management within the Bayesian
framework. With GPs, assumptions and prior knowledge can
be conveniently encoded in their covariance functions. The
generative process that is commonly used with GPs is as
follows:

y = y(x) = f(x) + ε, (1)

where ε ∼ N (0, σ2
ε ) is additive white Gaussian noise.

Let X = {xi}Ni=1 be the collection of all input vectors
and y ∈ RN×1 be the corresponding outputs. The covariance
matrix is denoted as Kff ∈ RN×N , which is constructed by
evaluating the covariance function on X. Then the prior distri-
bution of the latent f is given by p(f |X,θ) = N (f |0, Kff ),
where θ denotes the hyperparameters in GP. The learning
requires maximizing the log-likelihood under the additive
Gaussian noise assumption, which can be derived as

log p(y|X,θ) = −1

2
yTK−1y − 1

2
log |K| − N

2
log 2π, (2)

from which the hyperparameters θ and noise variance σ2
ε can

be estimated by using training data and maximizing the log-
likelihood.

D. Deep Gaussian Processes

The joint Gaussianity enforced by the definition of GP
ensured the tractability of the framework. However, as a trade-
off, the joint Gaussianity also introduced limitation on the
expressiveness of GP, e.g., the simple step function cannot
be well modeled by a simple GP prior. It can be shown
that a GP is closely related to a neural network [17]. With
the development of deep neural networks, deep Gaussian
processes (DGPs) emerged naturally. The concept of a DGP
was first proposed in [18], where the main idea is that
nonlinear mappings will not preserve Gaussianity. Therefore,
by adopting a function composition, the expressiveness of the
model is improved. As a trade-off, the marginal log-likelihood
that is required for training is no longer tractable under a
deep GP setting. In [18], the intractability was addressed by
using variational inference. Many efforts have been made for
inference of DGP, e.g., in [19], a doubly stochastic variational
inference algorithm was proposed. In our work, we adopted
the inference method from [18].

III. MODEL DESCRIPTION

Given a FHR recording x(t), we first construct an initial
attractor manifold reconstruction Minit using delay embedding,
with τ = 1 (delay by one sample) and E that is relatively
large, e.g., E = 10. The intuition of it is that, a relatively large
E ensures the conditions in Takens’ theorem to be satisfied,
and τ = 1 is the minimum delay, which suggests that there
is no information loss regarding the underlying dynamics.
Consequently, M init is of high dimension, E, and the variables
from the different dimensions are highly correlated. The point

Zt XH−1 . . . X2 X1 M
fZ fXH−1 fX1 fM

Fig. 3. A general form of dynamically constrained DGPs

t Z X Y
fZ fX fY

Fig. 4. A dynamically constrained DGP with three layers of mappings.

corresponding to time instant t on Minit
x is an E-dimensional

vector minit
x (t) = [x(t), x(t− τ), ..., x(t− (E − 1)τ)]>.

Then we model M as the output of a dynamically con-
strained DGP, as illustrated in Fig. 3, where the input Z is a
function of t, i.e., Z is dynamically constrained. Essentially,
we model M = fM (fX1(. . . fXH−1(fZ(t)))). Since the FHR
sigal x(t) contains missing samples, there are three types of
E dimensional vectors (rows) or points in M: fully observed
vectors collected in Mfo, partially observed vectors collected
in Mpo, and entirely unobserved vectors collected in Meu.
We train the DGP using the pairs of fully observed vectors
and their corresponding time instants, i.e., we set Y and t in
Fig. 3 to Mfo and tfo, respectively for training.

Without loss of generality, we continue the discussion with
a simpler example of DGP, shown in Fig. 4.

The generative process according to this DGP takes the form

yni = fYi (xn) + εYni, i = 1, . . . , dy, xn ∈ Rdx ,
xnj = fXj (zn) + εXnj , j = 1, . . . , dx, zn ∈ Rdz ,
znl = fZl (tn) + εZnl, l = 1, . . . , dz, t ∈ R,

(3)

where εYni, ε
X
nj and εZnl are additive white Gaussian noises,

fY , fX and fZ are the latent mappings governed by
three different GPs, i.e., fY ∼ GP (0, kY (X,X′)), fX ∼
GP (0, kX(Z,Z′)), and fZ ∼ GP (0, kZ(t, t′). In this work,
the covariance function of the GP for the dynamic layer, i.e.,
the first layer, is a Matérn class covariance function with
ν = 3

2 , and the covariance functions of the GPs for the remain-
ing layers are RBFs with automatic relevance determination.
The dimension for all layers, except for the dynamic layers,
are set to E, although different configurations can be explored.

The learning requires maximization of the log-marginal
likelihood,

log p(Y|t) = log

∫
X,Z

p(Y|X)p(X|Z)p(Z|t)dXdZ. (4)

Because of the nonlinear mappings, Gaussianity is not pre-
served. Consequently, the log-likelihood in Eq. 4 is intractable.
This difficulty can be addressed by introducing Np ≤ N
inducing or pseudo input-output pairs for each intermediate
or latent layers, such that, in each layer, the inducing input-
output pairs are mapped by the same latent mapping in that
layer. Specifically, Z̃ ∈ RNp×dz and UX = fX(Z̃) where
UX ∈ RNp×dx are introduced for the first intermediate
layer. Similarly, X̃ ∈ RNp×dx and UY = fY (X̃) where
UY ∈ RNp×dy are introduced for the second intermediate
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layer. The joint probability density function (pdf) can be
formulated accordingly:

p(Y,FY ,FX ,X,Z,UY ,UX , X̃, Z̃|t)
= p(Y|FY )p(FY |UY ,X)p(UY |X̃)

× p(X|FX)p(FX |UX ,Z)p(UX |Z̃)p(Z|t).
(5)

We note that the intractability is caused by the marginal-
ization of the latent variables, which corresponds to the terms
p(FY |UY ,X) and p(FX |UX ,Z). With the inference method
proposed in [18], these two terms can be canceled out and a
variational lower bound on Eq. 4 can be obtained as

G(Y,FY ,X,FX ,Z,UX ,UY |t)

=
p(Y|FY )p(UY )p(X|FX)p(UX)p(Z|t)

q(UY )q(X)q(UX)q(Z)
. (6)

The detailed derivation of Eq. 6 can be found in [20] and
[21]. This tractable lower bound not only can be used as the
objective function for training, but also for providing guidance
for setting the number of layers. Some recently analytical
analysis on the setting the number of inducing points can be
found in [22]. In our experiments, we adopted the DGP shown
in Fig. 4, and the number of inducing points was Np = N .

For prediction, the true posterior distribution p(Mpo|Mfo)
or p(Meu|Mfo) are approximated using the Gaussian vari-
ational distribution q(Meu) or q(Mfo) under the variational
framework. In our work, we use the mean of q(Meu) and
q(Mfo) as corresponding point estimates, which can be
regarded as MAP estimates since the mean of a Gaussian
distribution is also its mode. The uncertainty in learning
and prediction is embedded in the covariance, which can
provide additional guidance in model selection. The specific
derivation and computation can be found in [20]. Finally,
for the missing samples of the time series x(t), their final
estimates are averages over all available estimates, provided
in both recovered Meu and Mpo.

IV. EXPERIMENTS AND RESULTS

A. Synthetic Data

We first show that the GP-based method can provide a
better attractor reconstruction comparing with direct delay
embedding on the well known Lorenz system defined by Eq.
7, which was first studied by Edward Lorenz in modeling
atmospheric convection. We recall that the Lorenz system is
nonlinear, non-periodic, three-dimensional and deterministic,

dx/dt = a(y − x),
dy/dt = x(c− z)− y,
dz/dt = xy − bz.

(7)

We generated the ground truth attractor (a set of solutions
for Eq. 7) M of length 369 with a classic set of parameter
values a = 10, b = 8

3 , and c = 28. Then x(t) was
used to reconstruct the attractor using dynamically constrained
DGP and direct delay embedding, respectively. For direct
delay embedding, E and τ were optimally set using the grid

Fig. 5. The time series x(t) generated with Lorenz system (upper), the
ground truth attractor (bottom left), reconstructed attractor using direct delay
embedding (bottom middle) and reconstructed attractor using DGP (bottom
right).
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Fig. 6. The segment of FHR recording adopted for experiments (upper), and
the corresponding estimation results for different methods (bottom).

search method described in [13] and [14], respectively. The
reconstruction results, ground truth attratcor M, and x(t) are
shown in Fig. 5, where we can see that the estimation results
of the DGP are more topologically similar to the ground truth
attractor than the results obtained by delayed embedding.

B. Real Segment of FHR Recording

We selected a short FHR segment which contains 360
samples, then 10 consecutive samples were randomly selected
to be missing, by setting their values to zero. We then
implemented the GP-based approach to recover the values
of consecutively missing samples. The estimation results are
shown in Fig. 6, where the estimation results provided by
linear interpolation, cubic spline interpolation, and an autore-
gressive model are also included for benchmark purpose. The
order of the autoregressive model was optimally selected with
Bayesian information criterion (BIC) from model orders from
2 to 10.

The performance of each estimation method is summarized
in Table I, where the mean squared error (MSE) was adopted
as a performance metric. The results, clearly show that the
proposed method outperformed its competitors.
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TABLE I
COMPARISONS OF PERFORMANCE

estimation method MSE [BPM]
GP-based method 0.36
Linear interpolation 7.08
Cubic spline interpolation 1.98
Autoregressive model 58.83

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a Bayesian approach for estima-
tion of consecutive missing samples in FHR recordings based
on deep Gaussian processes. By way of attractor manifold
learning, our approach has the capacity of utilizing the simi-
larity in state space instead of only considering the correlation
in time. The experimental results on a real segment of FHR
recording showed that the estimates provided by this GP-based
approach are closer to the ground truth and that the proposed
method achieved a much better MSE compared to that of
the benchmark methods. We point out that we modeled the
dynamic of attractor manifold as a function of time, which
may not be suitable, depending on the shape of the attractor
manifold, e.g., involving sharp changes. In such cases, the
resulting posteriors will have large variance and the GPs will
have low signal-to-noise ratio (SNR). In future work, we plan
to explore the direction of modeling the dynamic of attractor
manifold as functions of previously observed samples on the
attractor manifold, where the length of history to be included
must be determined carefully.
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L. Lhotská, “Investigating ph based evaluation of fetal heart rate (FHR)
recordings,” Health and technology, vol. 7, no. 2-3, pp. 241–254, 2017.

[4] D. Ayres-de Campos, C. Y. Spong, E. Chandraharan, and F. I. F.
M. E. C. Panel, “FIGO consensus guidelines on intrapartum fetal
monitoring: Cardiotocography,” International Journal of Gynecology
& Obstetrics, vol. 131, no. 1, pp. 13–24, 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.ijgo.2015.06.020

[5] G. A. Macones, G. D. Hankins, C. Y. Spong, J. Hauth, and T. Moore,
“The 2008 National Institute of Child Health and Human Development
workshop report on electronic fetal monitoring: Update on definitions,
interpretation, and research guidelines,” Journal of Obstetric, Gyneco-
logic, & Neonatal Nursing, vol. 37, no. 5, pp. 510–515, 2008.

[6] A. Georgieva, P. Abry, V. Chudáček, P. M. Djurić, M. G. Frasch,
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