
A graph-theoretic sensor-selection scheme for 

covariance-based Motor Imagery (MI) decoding 

Kostas Georgiadis  

AIIA lab, Informatics dept., AUTH 

Information Technologies Institute 

(ITI), CERTH 

Thessaloniki, Greece 
georgiaki@csd.auth.gr 

Nikos Laskaris 

AIIA lab, Informatics dept., AUTH 

NeuroInformatics.GRoup, AUTH 

Thessaloniki, Greece 

laskaris@csd.auth.gr 

Dimitrios A. Adamos 

Department of Computing, Imperial 

College London, London, UK 

NeuroInformatics.GRoup, AUTH 

School of Music Studies, AUTH 

Thessaloniki, Greece 
d.adamos@ieee.org

Ioannis Kompatsiaris 

Information Technologies Institute 

(ITI), CERTH 

Thessaloniki, Greece 

ikom@iti.gr 

Spiros Nikolopoulos 

Information Technologies Institute 

(ITI), CERTH 

Thessaloniki, Greece 

nikolopo@iti.gr 

Abstract— Optimal sensor selection is an issue of 

paramount importance in brain decoding. When associated 

with estimates of covariance, its implications concern not only 

classification accuracy, but also computational efficiency. 

However, very few attempts have been made so far, since it 

constitutes a challenging mathematical problem. Herein, we 

propose an efficient heuristic scheme that combines 

discriminative learning (from a small training dataset of 

labelled trials) with unsupervised learning (the automated 

detection of sensors that collectively maximize the trial 

discriminability of the induced Covariance structure). The 

approach is motivated from a complex network modelling 

perspective. Its efficacy and efficiency are demonstrated 

experimentally, based on BCI-competition datasets concerning 

MI-tasks, and compared against popular techniques in the

field.

Keywords—discriminative learning, complex network 

modelling, graph clustering. 

I. INTRODUCTION 

Brain Computer Interfaces (BCIs) constitute a promising 
neuroengineering technology as they provide an alternative 
communication pathway, by converting brain signals to 
machine commands [1]. BCIs can be operated solely by 
brain commands and do not require any peripheral nerve 
activity. Hence, they were originally opted to assist people 
with partial or complete loss of their fine motor skills by 
increasing the individuals’ independence or aiding in their 
rehabilitation process [2]. Besides their initial motivation, 
BCIs have also found application in other activities such as 
gaming or mental workload monitoring [3], [4]. In respect, 
electroencephalography (EEG) appears as one of the most 
popular options for registering the brain activity due to its 
low cost, non-invasiveness, high-temporal resolution and 
easy adaptation to non-clinical settings. 

BCIs built upon motor imagery (MI) activity receive 
increasing attention, since they can operate in asynchronous 
mode (i.e. as self-paced BCIs). They are based on changes in 
sensorimotor rhythms (SMR) that become detectable when 
someone either plans or executes a movement. Originally, 
these brain activity modifications were sought in the form of 
an initial power decrease in μ-band (desynchronization) 
followed by a power increase in β-band (synchronization) 
once the MI task was completed [5]. An alternative, well-
established, MI decoding scheme is the data-learning 

technique of common spatial filters (CSP) [6] that aims in 
the maximal discrimination between two classes of brain 
activity (e.g. imagination of hand vs. foot movement). More 
recent approaches include decoders based on descriptors 
form Graph Signal Processing domain [7], [8], Riemannian 
geometry [9] and the field of complex networks [10]. 

Almost all the aforementioned decoding approaches 
require several sensors to perform sufficiently, which hinders 
the ability of a BCI to operate promptly. Aiming to tackle 
this limitation, several research groups have employed 
different strategies in order to reduce the required number of 
sensors while preserving high classification performance. 
The most prominent sensor selection approaches encompass 
the fundamentals of the CSP method using either spatial (e.g. 
[11] and [12]) or spatiotemporal filters (e.g. [13]-[15]).
Despite the abundance of sensor selection approaches, the
identification of an optimal sensor set regarding the
registered covariance structure has received only very limited
attention so far. To the best of our knowledge, the problem
has been addressed in [16] for a more general BCI-setting
and in [17-18] for MI-decoding.

We herein introduce a methodology for crafting a robust 
and parsimonious covariance-based MI decoder from an 
extended array of sensors. It is a hybrid-learning scheme that 
combines discriminative learning (an initial feature ranking 
step) with unsupervised learning (the detection of most 
informative subarray of sensors). It relies on the complex 
network modelling of brain signals recorded from the whole 
sensor array and exploits the graph-clustering technique of 
Dominant-Set [19] for detecting the subset of sensors with 
covariance structure best discriminating between MI-tasks 
(see Fig.1). Considering that a given covariance matrix 
encapsulates the pairwise relations among all variates (in 
particular, a spatial covariance matrix incorporates the 
functional covariation between signals recorded at distinct 
sites), it can be thought as representing a fully connected 
graph. Hence, sensor selection can be cast as a subgraph 
detection problem. Following this line of thought, we 
commence by building a connectivity graph that incorporates 
all available sensors as nodes and has a structure that directly 
reflects the ability of recording sites, taken in pairs, to 
discriminate between MI-tasks.  At this first stage, a small-
set of training trials is necessary for estimating the class-
separability of each entry in the full covariance matrix. Next, 
the Dominant-Set algorithm is invoked in order to detect the 
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most compact subgraph among the emerged network of 
relations. Since edge-strength encodes the covariates’ 
discriminability, the delineation of the Dominant-Set is 
equivalent with mining a subset of sensors with highly 
informative covariance structure. Finally, the MI-decoding is 
realized, based on the reduced covariance matrices by means 
of a support vector machine (SVM) operating within an 
appropriate Riemannian geometry framework [9].     

The proposed decoding scheme, denoted hereafter as 
SVM+

DomSet
Cov is validated using trials of 

electroencephalographic activity arising from two distinct 
mental tasks, provided within the two datasets of BCI 
competition III and its performance is directly compared 
against popular alternative schemes. 

II. METHODOLOGY

A. A graph-representation of discriminability based on

estimates of functional covariation.

Sample covariance matrices (SCMs) are known to
provide information-rich descriptions of multichannel EEG 
signals, sufficient for the discrimination between specific 
mental tasks [21]. For the clarity of the presentation, we 
consider here a two-class scenario and that a training set of 
representative trials is available along with the associated 
class labels. The SCM for a given single trial 𝑋𝑖  ∈
ℝ 𝑆 × 𝑇 , 𝑖 = 1, 2, … 𝑁𝑡𝑟𝑖𝑎𝑙𝑠 , with 𝑆  and 𝑇  denoting the
number of sensors and samples in time respectively, is 

calculated as 𝑪𝑖 =  𝑋𝑖𝑋𝑖
𝑇 (𝑇 − 1)⁄  (or through an equivalent

regularized estimator). This simple computation leads to an 
𝑆 × 𝑆 representation for each trial that will be wrapped in 
one of the two sets of covariance matrices (i.e. 𝑪𝑶𝑽𝐴  or
𝑪𝑶𝑽𝐵 ), according to the trial’s label 𝑦𝑖 ∈ {0, 1} . The
covariation patterns, conveyed by these trial-based SCMs, 
are treated as feature-vectors and a feature-ranking 
algorithm is employed to evaluate the separability among 

the two brain-states (mental tasks) regarding each entry in 
the formed SCMs. In particular, the non-parametric 
Wilcoxon test is applied 𝑆(𝑆 − 1) 2⁄  times along every 
dimension in the vectorized instantiations of the SCMs. The 
obtained results are reshaped into a single symmetric 𝑆 × 𝑆 
matrix W, directly reflecting the discriminability of the 
entries in the original (full-sized) SCM representation. This 
step is exemplified via the visualization in Fig.1a, where the 
matrix of feature-ranking scores has been color-coded (high 
Wscore corresponds to high separability), providing some 
evidence about the block-structure of the underlying 
measurements. Adopting, the perspective of complex 
network modelling, the matrix W is treated as the adjacency 
matrix of a graph that involves all sensors and characterized 
via a connectivity that reflects the covariations facilitating 
mental-task discrimination. This concept is further 
illustrated is Fig.1b, where the connectivity pattern has been 
sparsified via a simple edge-filtration step. 

B. Sensor Selection by means of Dominant Set detection

With the purpose of identifying a small-sized (sub)array
of sensors that is characterized by the most discriminant 
covariance structure, we scrutinize the connectivity pattern in 
W by means of Dominant-Set algorithm. This is an efficient 
graph-clustering algorithm, that operates via simple 
operations on the weighted-adjacency matrix of a given 
graph and isolates the most cohesive subgraph.  

Formally, the problem is formulated as maximizing the 
following objective function of cohesiveness: 

 𝐹(𝑍) =  𝑍𝑇𝑾𝑍 

subject to Z ∈ Δ , where Δ = {𝑍 ∈ ℝ𝑆: 𝑧𝑖 ≥
0, ∀𝑖  𝑎𝑛𝑑 ∑ 𝑧𝑖 = 1}𝑆

𝑖=1 . The solution is based on the
approach of replicator dynamics, as it is described in [19] 
and implemented in the Matlab-code provided in [20]. The 

Figure 1 The Dominant-Set detection approach to sensor selection, exemplified for A2 subject. a) The Weighted Adjacency matrix derived from the trial-

based covariances in the training set: each (i,j) entry reflects the Wilcoxon score from contrasting the corresponding cov(x i,xj) between MI-tasks. b) The 
associated connectivity graph, drawn over the sensor-array, after a simple sparsification step (during which only edges with Wscore>2 have been kept). c) The 

Dominant-Set of nodes detected within the initial, fully-connected, graph. d) MDS embedding of the training trials based on DomSetCov representation. e) 

The corresponding MDS map of test trials. 
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algorithm converges fast to a vector Z* that contains the 
memberships of nodes in the Dominant-Set. In our case, 
where W contains the discriminability of the SCM-entries, 
the detected subgraph can be thought as the functional 
module of the underlying complex brain network that is 
expected to result in a reduced in size but highly 
discriminative covariance pattern. Returning to the previous 
example, we illustrate in Fig.1c topographically the solution 
that corresponds to a cohesiveness-level F(Z*) of 2.62, when 
the cohesiveness-level of the overall graph is only 0.77. 

C. Classification and Validation 

The representation of trials based on the parsimonious 
description of covariance, as constrained within the selected 
(sub)array of sensors, is by definition symmetric positive 
definite (SPD) considering that the post-stimulus activity is 
lengthy enough to ensure the full rank property of the 
covariance matrix. According to differential geometry, SPD 
matrices are not embedded in a vector space, but reside on a 
Riemannian manifold, denoted as 𝑆𝑦𝑚𝑆𝑅𝐸𝐷

+  , that defines a 

hypercone in the Euclidean space [9]. The inner product 
between two points, 𝑨 = 𝑪𝒊  and 𝑩 = 𝑪𝒋 , laying on the 

tangent space of 𝑆𝑦𝑚𝑆𝑅𝐸𝐷
+  at point 𝑷  can be readily 

estimated using the Affine Invariant Riemannian Metric 
(AIRM) [22] as follows:  

 〈𝑨, 𝑩〉𝑷 ≜ 𝑇𝑟𝑎𝑐𝑒(𝑷−1𝑨𝑷−1𝑩) 

Since the estimation of the inner product between two 
points is ensured, SVMs that have proved to provide robust 
results regarding the classification of brain activity [23], can 
be adopted for carrying out the discrimination between the 
two mental tasks based on the reduced covariance 
representation. A typical choice of 𝑷  for this task, is the 
geodesic mean of covariance matrices of the training set. 

III. RESULTS 

A. Dataset Description and Performance Evaluation 

For the experiments conducted in this study, two publicly 
available datasets from previous BCI competitions consisting 
of EEG recordings during MI tasks were used. The first one 
was the Dataset IVa of BCI competition III [24], denoted 
hereafter as Dataset IVa, and consisted of the 
electroencephalographic activity of five subjects (coded as 
A1, A2, …, A5) performing movement imagination of either 
their right hand or their foot. This dataset accommodates the 
issue of sensor selection since EEG is registered with 
numerous sensors (i.e. 118) at a sampling frequency of 100 
Hz. All subjects participated in a total of 280 MI trials, 
equally distributed among the two classes, with duration of 
3.5 sec. The train/test set split was different among subjects, 
with the training set encompassing 168, 224, 84, 56 and 28 
trials for subjects A1, A2, A3, A4 and A5 respectively, with 
the remainder of the trials comprising the test set.  

An additional dataset from the same competition, denoted 
as Dataset IIIa [25], was also considered for the further 
evaluation of our approach. In the recordings of this dataset, 
the task for the three participants, denoted as B1, B2 and B3, 
was to perform left hand, right hand, foot or tongue MI tasks 
and their brain activity was registered via 60 sensors with a 
sampling frequency of 250 Hz. In our study only trials 
concerning the left and right hand MI tasks were selected, 
resulting in a total number of trials equal to 180 (for the first 

subject) and to 120 (for the second and third subject). Trials 
were equally distributed among both train/test set and the 
two classes. 

Since both datasets had a predefined sequence of 
train/test trials by the organizers of the BCI competition, the 
validation scheme for this study was tailored accordingly. 
This was dictated by the need to cast the performance of our 
decoding scheme in a way to be directly comparable with the 
results reported in previous works. 

B. DomSet
Cov-based decoding of MI activity 

Working in a personalized fashion, each trial of both train 
and test set was first band-pass filtered in the 8-30Hz and 
SCMs were then derived based on the post-stimulus brain 
activity from a 2-second interval (starting 0.5 second after 
the visual trigger for movement initiation). Finally, the 
Dominant-Set of sensors was identified for each subject 
independently, based on the trials in the training set.  

The discriminability of the derived representation and its 
generalizability are demonstrated, respectively, via Fig.1d 
and Fig.1e, where the training and test trials of subject A2 
have been visualized as 2D point-clouds based on the 
technique of multidimensional scaling (MDS). MDS is a 
distance preserving visualization that acted on the geodesic 
distances between all the reduced SCMs in the ensemble of 
training(test)set and resulted to a scatterplot reflecting the 
geometrical relationships on the Riemannian manifold. The 

inter-covariance distance was induced by (3) as 𝛿(𝑪𝑖 , 𝑪𝑗) =

‖𝑙𝑜𝑔𝑚(𝑪𝑖
−1/2

𝑪𝑗𝑪𝑖
−1/2

‖
𝐹

, where 𝑙𝑜𝑔𝑚(. ) is the log-matrix 

operator and ‖. ‖𝐹 denotes the Frobenius norm of the matrix 
[17]. The clear separation seen in the MDS space aligns well 
with the high classification performance seen for this subject 
in Table I. 

Table I refers to Dataset IVa and provides a direct 
comparison, in terms of classification accuracy among the 
introduced decoder (i.e. SVM+

DomSet
Cov), the SVM decoder 

that worked on the full-sized covariance matrix, the standard 
CSP technique, two popular CSP alternatives for sensor 
selection (WTRCSP and SRCSP [11]) and a recently 
introduced sensor selection scheme that uses Riemannian 
distance [17], denoted hereafter as Riedist. It is evident that 
the proposed decoder significantly outperforms the CSP 
approach, providing an improvement of roughly 15%. 
Additionally, SVM+

DomSet
Cov demonstrates higher 

classification performance compared to the CSP-based 
sensor selection algorithms, with a 6% improvement relative 
to the WTRCSP technique and a 3% improvement relative to 
the SRCSP technique. Moreover, the 

DomSet
Cov 

representation compares favorably against both the full-sized 
SCM and the Riedist technique, with a 12% and 4% 
performance improvement respectively. 

Finally, it is important to note here that the decoder’s 
performance is being reached with a Dominant-Set 
consisting of 15 (out of 118) sensors on average, which is 
equivalent to gathering information from 1 sensor out of 10 
(i.e. 13%).  Also, the selection (an example can be seen in 
Fig.1c) can be characterized as neurophysiologically 
meaningful, since the selected sensors lie over the 
sensorimotor area that is highly activated when a mental task 
is performed. This proves not only the effectiveness of our 
approach but also indicates its low computational cost, an 
essential feature for all asynchronous BCIs. 
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TABLE I.  CLASSIFICATION ACCURACY (%) IN THE “HAND VS FOOT” 

TASK 

Subj  

ID 

Dataset IVa 
DomSet

Cov 

(#sensors)
 Cov  CSP 

WTRCSP 

[11] 

SRCSP 

[11] 

Riedist 

[17] 

A1 74.1 (13) 68.8 66.1 69.6 72.3 74.1 

A2 98.2 (10) 96.4 96.4 98.2 96.4 98.2 

A3 68.4(15) 54.6 47.5 54.6 60.2 59.2 

A4 80.4 (18) 75.4 71.9 71.9 77.7 77.7 

A5 89.3 (19) 53.6 49.6 86.9 86.5 80.6 

aver. 82.1 (15) 69.8 66.3 76.2 78.6 78.0 

 

Similar trends were observed in Dataset IIIa (refer to 
Table II), where an average improvement between 3% and 
9% is achieved, with the Dominant-Set being comprised of 
10 (out of 60) sensors on average. It is important to note here 
that a comparison between the proposed decoder and Riedist 
technique was not made for this dataset, since the results 
provided by the authors in [17] concern only Dataset IVa. 

IV. DISCUSSION 

A graph-theoretic algorithm for crafting robust and 
parsimonious covariance-based MI decoders for 
multichannel EEG signals has been presented. Our approach 
was introduced in the setting of binary classification. 
However, its modification to accommodate more classes is, 
in principle, feasible and remains to be thoroughly 
investigated, with one solution being a “one vs all” approach. 
Among the most prominent advantages are the fast execution 
during the learning stage (sensor selection is accomplished 
swiftly) and the lower computational cost (with respect to the 
full-sized covariances) of the decoder during operation. An 
additional, less obvious, advantage is the robustness of the 
approach to both bad-sensors and intense artifact 
contamination at particular sites (like blinks over frontal 
regions). The discriminative learning during the training 
stage ensures that such sensors are excluded from the 
Dominant-Set. A future extension of this work will focus on 
crafting decoders for self-paced BCIs. For instance, a two-
stage decision system can be built as proposed in our 
previous work [26]. More specifically, such a system will 
include a “brain switch” based on the covariance structure 
enhancing the separability between rest and MI-segments 
followed by an MI-classifier based on the covariance 
structure enhancing the discrimination among distinct tasks. 
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TABLE II.  CLASSIFICATION ACCURACY (%) IN THE “LEFT HAND VS 

RIGHT HAND” TASK 

Subj  

ID 

Dataset IIIa 
DomSet

Cov 

(#sensors)
 Cov  CSP 

WTRCSP 

[11] 

SRCSP 

[11] 

B1 98.9 (11) 95.6 95.6 98.9 96.9 

B2 75.0 (11) 63.3 61.7 71.7 53.3 

B3 96.7 (9) 93.3 93.4 93.3 93.3 

aver. 90.2 (10.3) 84.1 83.5 87.3 81.1 
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