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Abstract—Monitoring the progress of patients during the re-
habilitation process after an operation is beneficial for adjusting
care and medical treatment in order to improve the patient’s
quality of life. The supervised methods used for this in the
literature need data labeling, which is a time and cost-intensive
procedure. In this paper, we propose Deep Convolutional Neural
Network (DCNN) for monitoring the progress of the rehabilita-
tion, utilizing the kinematic data from a Wearable Sensor System
(WSS). The WSS provides three-dimensional linear acceleration
and angular velocity from multiple body parts such as the
lower back and lower limbs during walking at any speed on
level ground. Twelve patients with hip unilateral arthroplasty
completed two weeks of gait training after the operation. The
classification results of different Inertial Measurement Unit
(IMU) placements revealed that the IMU placed at thigh achieved
the highest accuracy. The proposed DCNN achieved up to 98%
classification accuracy for the rehabilitation progress monitoring.
This approach provides an objective and evidence-based way of
understanding clinically important changes in human movement
patterns in response to exercise therapy.

Index Terms—CNN, Gait Rehabilitation, Progress Monitoring,
IMU, Machine Learning, Digital Healthcare and Therapy Control

I. INTRODUCTION

Portable Wearable Sensors (WSs) are attracting increasing
interest in the healthcare sector for health monitoring and con-
trol, disease forecasting, prevention and individualised thera-
peutic applications [1]–[3]. Among them, Inertial Measure-
ment Units (IMUs) are of particular interest due to their user-
friendly characteristics and offer a broad application spectrum
with promising impact on patient care [4]–[7]. The application
of Machine Learning (ML) methods to large data volumes
recorded by wearable devices opens up new possibilities
for diagnosis, prognosis and clinical decision making in a
variety of disorders [8], [9]. IMUs are capable of measuring
multiparameters, such as 3D linear acceleration, 3D angular
velocity and 3D magnetic field. They enable a wide range of
locomotor activities to be captured [10], [11].

One particular challenge in this regard is the long-term
multidimensional data recordings that quickly become large,
complex and clinically uninterpretable. Another challenge is to
process, extract and convert the relevant information on normal
and pathological gait behaviour into effective and affordable

interventions. Many studies have been yet conducted in the
area of activity and gait phase classification. The authors in
[12] performed manual feature extraction from 3D accelerome-
ter signals from the wrist to classify different daily activities of
elderly people. In [13], force resistive sensors and IMUs were
applied for Parkinson’s Disease (PD) gait phase classification.
The feasibility of the IMU for gait analysis and assessment
based on hand-crafted features from kinematics data has been
demonstrated in previous studies [14]. However, a vast amount
of data recorded by the wearable sensors remains unprocessed,
although it may hold key information to answer open questions
on patient care [15]. Therefore, there is a great need to develop
high-performance data processing and presenting methods.

One of the most promising methods for remote patient
monitoring are ML and WSs, which do not only provide the
possibility to measure the kinetic symptoms automatically, but
also enable caregivers to follow up the progress of rehabilita-
tion and the quality of interventions more frequently than the
current clinical practices [16], [17]. The study performed in
[11] addresses the classification of abnormal movements detec-
tion in PD using a Denoising Autoencoder (DAE). The authors
in [18] applied a Convolutional Neural Network (CNN) to
extract gait parameters, e.g. cadence, step time, velocity,
from kinematic data avoiding the manual extraction of gait
parameters. However, to the best of the authors knowledge,
no studies have examined the IMUs placement with different
kinematic data in patients with hip unilateral arthroplasty
operation in multiple WS applications. Thus, this study aimed
to conduct a comprehensive analysis of the placement of
multiple wearable sensors, the effect of different kinematic
signals and the application of deep convolutional networks for
the progress monitoring in rehabilitation.

The paper is organized as follows. In Section II, the
data collection system via Wearable Sensor System (WSS),
rehabilitation sessions and the preprocessing step applied to
the kinematic signals are described. The proposed DCNN for
classification of the progress according to the rehabilitation
day is introduced in Section III. In Section IV, the evaluation
results are demonstrated. Finally, the main conclusion of this
work is presented in Section V.
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Fig. 1. Wearable System Concept: the gait kinematic data are collected and processed with ML methods in an Android application for digital and biomedical
healthcare systems. First step, data collection from patients with hip unilateral arthroplasty surgery. Second step, segmentation of kinematic signals in GCs.
Step three, use of different IMUs and kinematic signals to train the proposed DCNN for rehabilitation progress monitoring.

II. DATA RECORDING AND PREPROCESSING

In this section, we introduce the procedure used to select
the patients and the data collection. In particular, we provide
a brief explanation on the rehabilitation sessions and the
routines applied in this work. Furthermore, the hardware setup,
including WS and a tablet are described.

A. Rehabilitation Training

For the study, a group of twelve voluntary patients with
hip unilateral arthroplasty were selected (age: 63 ± 10
years, height: 173 ± 5 cm). All patients performed the same
gait rehabilitation exercises and sessions. Before the first
rehabilitation session, all patients were instructed about the
course of sessions and the tasks they had to perform in each
session. The WSS including four IMUs and an Android tablet
were also explained to each patient. All patients performed
three walking trials of 15 m to become familiar with the
above-mentioned system. The study was conducted over two
weeks excluding weekends and the patients had to perform
one rehabilitation session per day. The rehabilitation sessions
were based on gait exercises such as a 20 minutes walk in a
sports hall in a rehabilitation clinic under the supervision of
a physiotherapist.

B. Wearable Sensor System

The measurement setup consists of a set of four wearable
IMUs integrated into a sensor platform [19]. The sensor
units were attached to the patients’ foot, lower leg, upper
leg and lower back as depicted in Fig. 1. To provide
comparable conditions, the same sensors were attached to
the same positions on each subject. The data were captured
synchronously at a sampling rate of 60 Hz. Specifically,
we used the Shimmer 3 sensor platform, which provides

Fig. 2. Gait events and gait phases in one GC. The GC is divided into stance
and swing phase. Stance starts from IC, to terminal contact TOE. Stance phase
nearly represents about 60% of GC. Swing phase begins as soon as the toe
leaves the ground, and ends just prior to IC. Swing phase occupies the rest
40% of the GC.

real-time kinematic motion sensing such as three-dimensional
linear acceleration, angular velocity and magnetic field. The
data were transmitted via Bluetooth, analysed and processed
in an Android application developed for this purpose. The
above-mentioned application is able to receive the kinematic
data and perform monitoring of the rehabilitation progress.

C. Gait Cycle Segmentation

Human walking can be described in the context of a Gait
Cycle (GC) (see Fig. 2). A stride is the distance between
the Initial Contact (IC) of the first foot and the next IC of
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Fig. 3. Estimation of the IC and TOE obtained from the foot angular velocity
in the sagittal plane. Red triangle, green circle and black square markers
represent the MS, IC and TOE, respectively.

the same foot. In other words, a GC is made up of two
steps. Each stride contains a stance and a swing phase.
The stance and swing phases are the minimum number of
phases in which a GC can be divided. A complex phase
model with eight sub-phases reported in [20]–[22] is used
to define the duration of the stride, stance and swing
phases and accordingly other temporal parameters such
as cadence, step length, gait speed, etc. [23]. The defined
IC events as shown in Fig. 2-3 were used to segment the
gait kinematic data (3D acceleration and angular velocity
signals) into GCs. Each GC was resampled to the length
of 100 samples so that all GCs have the same length [7], [24].

III. CONVOLUTIONAL NEURAL NETWORK

It has been shown that CNNs are suitable for processing
multidimensional data [25]. They have the ability to learn
a high level of abstraction and features by applying a con-
volution operation to the raw input data. The CNN archi-
tecture used here is based on the following building layers:
Convolutional (Conv), Batch Normalization (BN), Rectified
Linear Unit (ReLU), Dropout (D), Average-Pooling (AP), fully
connected (FC) and Softmax (see Fig. 1). A convolutional
connection between layers is defined by a set of Kl kernels
h1, . . . , hKl

of length Ll and biases b1, . . . , bNl
. The index l

hereby represents a label for the layer. Given a multidimen-
sional input vector xd with d = 1, . . . ,Kl−1, the output of
the convolutional connection is computed as

on = φ

(∑
d

hn,d ∗ xd + bn

)
, (1)

with n = 1, . . . ,Kl. To increase the stability of the CNN,
BN normalizes the output of the previous activation layer by

subtracting the batch mean and dividing by the batch standard
deviation. The activation function φ used for this type of
connection is ReLU. Dropout layers work by probabilistically
removing inputs from a previous layer to the next one. The
dropout parameter is defined as r. It has the effect of making
nodes in the network generally more robust to the inputs.
The AP layers increase robustness of the extracted features.
The feature maps obtained by the convolutional connection
are downsampled by taking the average in temporal windows
of length p. The fully connected layer connects all outputs
from the previous layer to all the inputs on the next layer.
This type of connection is defined by a set of weight vectors
W1, . . . ,WKl

and biases b1, . . . , bNl
. Given a single-channel

input vector x, the activation of the densely connected layer
is computed by matrix multiplication as

ak = ReLu

(∑
l

Wl,k ∗ xl + bk

)
, (2)

with k = 1, . . . ,Kl. Following the dense layer, a Softmax
layer is applied. The Softmax layer turns numeric output of
the last linear layer of a multi-class classification network into
probabilities by taking the exponents of each output and then
normalizing each number with the sum of the exponents. The
Softmax output vector adds up to one. The last layer of the
network is the classification layer. This layer uses the cross
entropy loss function for multi-class classification. The cross
entropy loss function is given by

c(y,m) = −ωmlog

(
eym∑M−1

u=0 eyu

)
, (3)

where ωm is the loss weight of each class. ym and yu are the
outputs to the different classes. The index m = 0, . . . ,M − 1
refers to the number of classes, which in this study is 10.
In spite of the many benefits of the deep-layered structure
of DCNN, a “deep” structure also means complicated hyper-
parameters as well as various choices of architectures, which
increases the difficulty to build an appropriate and efficient
model. Although there are several studies [26], [27] about the
automatic optimization of parameters of DCNN, the optimized
process is usually time-consuming and easily converges into a
local optimum due to the large number of DCNN parameters.
Thus, the DCNN model was build initially based on a few
general design principles [28]. Then several configurations of
the network are tested using the experimental data, and the
one with best performance is selected as the setting of the
final model.

IV. RESULTS

The lower body gait kinematic data from twelve patients
with hip unilateral arthroplasty were used for this study.
The study lasted for two weeks excluding weekends and the
patients had to perform one rehabilitation session of 20 min per
day after the operation. The gait kinematic data were separated
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in different rehabilitation days (1 to 10). The 3D linear
acceleration and 3D angular velocity were segmented into GCs
using the method described in Section II-C. The kinematic
data from each patient and day were mixed together using
different signals (linear acceleration and/or angular velocity)
and IMUs (pelvis, thigh, shank and foot) (see Section II) to
build a larger dataset for training, validating and testing the
DCNN network. The 4D input matrix dimensions (R x C
x d x S) of the each dataset fed into the DCNN depended
on the number of IMUs and gait kinematic signals. The total
number of available input matrices S, after the segmentation
of the gait kinematic data of all twelve patients, is 98116.
The number of channels d is 1. The columns C of the input
data matrix is set to 1 GC (100 samples). The rows R of
the input data matrix depends on the number of IMUs (1 to
4) and kinematic signals (3 to 24). In case of applying only
one type of kinematic signal (acceleration or angular velocity),
the number of signals per IMU is 3. In case of applying
both kinematic signals (acceleration and angular velocity), the
number of signals per IMU is 6 (see Table I).

To analyze the optimal placement of the IMUs and the
impact of different kinematic signals on the rehabilitation
progress monitoring, the CNN was implemented in Matlab
and trained several times with different IMU combinations
and signals. For all cases, the training, validation and test data
were randomly split into 70% | 15% | 15%, respectively. For
optimization, we used the adaptive moment estimation (Adam)
method [29]. The mini-batch size and learning rate were set
to 32 and 0.01, respectively. The training epochs were set to
15, which was found to achieve a good trade-off between
generalization and classification accuracy, and at the same
time avoids overfitting. A stop loss criterion was applied to
the training progress by evaluating the validation loss over
the validation steps. The training was stopped if there was no
improvement in the validation loss during the last 3 validation
checks.

Fig. 4 shows the classification accuracy for different lo-
cations of the IMUs and the effect of combining different
kinematic signals for the progress monitoring. It can be seen
that the classification accuracy for different sensors decreases
as in the following order: thigh (LUL), pelvis (P), shank
(LLL) and foot (LF). The best results for one IMU are
achieved at the thigh with 3D acceleration and 3D angular

TABLE I
PROPOSED DCNN ARCHITECTURE AND HYPERPARAMETERS

Layer Parameters and functions
Input R x C x 1 x 98116

Convolutional 5x5, 256, ’same’, BN, ReLu, D (r = 0.5)
AP (2x2,Stride=1)

Convolutional 4x4, 128, ’same’, BN, ReLu, D (r = 0.2)
AP (2x2,Stride=2)

Convolutional 3x3, 96, ’same’, BN, ReLu
Convolutional 2x2, 48, ’same’, BN, ReLu
Fully connected 10 classes
SoftMax
Classification Cross Entropy

Fig. 4. Classification accuracy of one IMUs applying the proposed DCNN
for Pelvis (P), Left Upper Leg (LUL), Left Lower Leg (LLL) and Left Foot
(LF).

TABLE II
CLASSIFICATION ACCURACY OF THE PROPOSED DCNN FOR DIFFERENT

IMU LOCATIONS AND KINEMATIC SIGNALS

Sensors/Signals 3D Acc and 3D Gyr 3D Acc 3D Gyr
1 IMU 95.14% 90.30% 92.73%
2 IMUs 97.33% 95.81% 96.23%
3 IMUs 97.75% 96.30% 96.8%
4 IMUs 98.37% 96.65% 95.8%

velocity, since the related sensor is directly located below
the hip joint and therefore, the kinematic signals reflect the
changes of the limb motion range during the rehabilitation
progress. The shank and the foot locations are not directly
affected after the operation and thus exhibit low classification
accuracy. Table II summarizes the classification accuracy for
more than one sensor and the effect of different kinematic
signals. It is seen that using more sensors for the rehabilitation
monitoring progress leads to an improvement of the accuracy.
For two IMUs, the thigh and the pelvis achieved the best
results. For three IMUs, the thigh, pelvis and shank led to
the highest classification accuracy. The effect of different
kinematic signals (3D accelerometer and 3D angular velocity)
of the IMUs regarding the classification accuracy are not
consistent for gyroscopes and accelerometers. In the case
of one IMU, the 3D angular velocity signals achieve better
results than the 3D acceleration for the pelvis and thigh.
However, the 3D acceleration signals achieve better results
than the 3D angular velocity for the shank and foot. This
effect may suggest that upper limb locations are convenient
for gyroscopes and lower limb locations are more suitable
for acceleration sensors. Therefore, the combination of the
complementary information from different sensors, signals and
locations increases the classification accuracy.
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V. CONCLUSIONS

This study investigated the application of the proposed
DCNN for the rehabilitation monitoring using the kinematic
data of patients with unilateral hip arthroplasty operation.
The results show that the proposed DCNN is capable to
monitor the progress of the rehabilitation in response to
a physiotherapeutic training. Therefore, the integration of
machine learning and wearable sensor technology provide
an objective way to understand the changes on the human
movement during the rehabilitation process. A comprehensive
analysis of multiple locations of the wearable sensors
for rehabilitation monitoring was performed with the gait
kinematic data from four IMUs located at different positions
on the body: pelvis, thigh, shank and foot, respectively. The
effect of different type of signals (acceleration and angular
velocity) was also analyzed. The gait kinematic signals were
segmented into GCs and used as input for the proposed
DCNN for rehabilitation progress classification. For one
IMU, the best results were obtained from the sensor placed
on the thigh due to the direct relation to the motion range of
the hip. Future work will include the analysis of the number
of GCs and kernel size used for the DCNN input data and
the time-frequency relation of the gait kinematic data during
the rehabilitation.
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for hyper-parameter optimization,” in Advances in Neural Information
Processing Systems 24, J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2011,
pp. 2546–2554.

[27] L. Zhang and P. Suganthan, “A survey of randomized algorithms for
training neural networks,” Information Sciences, vol. 364-365, pp. 146
– 155, 2016.

[28] O. Abdel-Hamid, l. Deng, and D. Yu, “Exploring convolutional neural
network structures and optimization techniques for speech recognition,”
08 2013.

[29] D.P. Kingma and J.L Ba, “Adam: A Method for Stochastic Optimiza-
tion,” International Conference on Learning Representations, 12 2014.

1337


