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Abstract—Neural speech decoding aims at direct decoding
of speech from the brain to restore speech communication in
patients with locked-in syndrome (fully paralyzed but aware). De-
spite the recent progress, exactly which aspects of neural activities
are characterizing the decoding process is still unclear. Neural
oscillations have been associated with playing a key functional
role in neural information processing and thus might provide
significant insight into the decoding process. Previous research
has investigated a limited range of neural frequencies for decod-
ing, usually the high-gamma oscillations (70 − 200Hz) in elec-
trocorticography (ECoG) and lower-frequency waves (1− 70Hz)
in electroencephalography (EEG). Hence, the exact contribution
of specific frequency bands is still unclear. Magnetoencephalog-
raphy (MEG) is a non-invasive method for directly measuring
underlying brain activity and has the temporal resolution needed
to investigate the role of cortical oscillations in speech decoding,
which we attempted in this study. We used three machine learning
classifiers (linear discriminant analysis (LDA), support vector
machine (SVM), and artificial neural network (ANN) to classify
different imagined and spoken phrases for finding the role of
brainwaves in speech decoding. The experimental results showed
a significant contribution of low-frequency Delta oscillations
(0.1− 4 Hz) in decoding and the best performance was achieved
when all the brainwaves were combined.

Index Terms—brainwave, magnetoencephalography, neural
speech decoding, LDA, SVM, ANN

I. INTRODUCTION

Severe brain damage or amyotrophic lateral sclerosis (ALS)
may cause locked-in syndrome, a state of paralysis but with
cognitive awareness [1]. These patients lose their communica-
tion ability due to articulatory paralysis, leaving only the neu-
ral pathway as a medium for restoring a certain level of com-
munication. Current brain-computer interface (BCI) spellers
address this challenge by decoding attentional correlates from
the brain while the patients focus on selecting letters randomly
displayed on a keyboard [2]. The slow communication rate
(< 10 words/minute) of these BCIs is a major impediment for
cultivating natural communication. Moving beyond the slow
and laborious BCIs, current research is progressing towards
finding a solution for fast communication by attempting to
decode speech directly from the brain. These neural speech
decoding paradigms or speech-BCIs have the potential to offer
real-time communication assistance, thereby, improving the
quality of life for these neurologically impaired patients.

This work was supported by the University of Texas System Brain Research
Grant under award number 362221 and the National Institutes of Health (NIH)
under award numbers R03DC013990 and R01DC016621.

Neural speech decoding algorithms use brain signals, ac-
quired either invasively with electrocorticography (ECoG)
or non-invasively with magneto-/electro-encephalography
(M/EEG), to find patterns corresponding to different speech
representations (phonemes/syllables/words/phrases). Consider-
ing the low-cost and easy data acquisition setup, EEG has been
used extensively to decode both imagined as well as overt
speech [3], [4]. ECoG has also been used in neural speech
decoding starting from classifying different speech units [5],
[6] to continuous neural speech recognition [7] and synthesis
[8], [9]. However, the frequency ranges used in decoding vary
within these two types of modalities, i.e., usually the high-
gamma brainwave (70 − 200Hz) in ECoG and < 70Hz in
EEG. These differences seem justified as previous research
has shown the large correlation of high-gamma ECoG activity
with multi-unit firing rates [10] and the low quality of EEG
signal in high-gamma band due to spatial distortion, volume
conduction, and large contamination due to movement artifacts
[11]. The major advantage of high-gamma signals is the higher
spatial specificity [12], which is inherently absent in EEG
signals. In short, these differences in brainwave frequencies
between these two modalities, make it difficult to understand
the distinct role of different brainwaves in decoding. Since
brainwaves reflect a certain level of functional processing of
the brain [13] and speech production has been characterized
with the assimilation of various dynamic cognitive functions
understanding the contribution of different brainwaves in de-
coding might provide a deeper insight into the neural features
that are actually being decoded in speech-BCI studies.

Although the role of brainwaves in speech processing has
been studied before, the majority of those are for understand-
ing perception [14], rather than speech imagination or pro-
duction. With ECoG, the distinct contribution of high-gamma
brain activity has been repeatedly shown [7], [10], but there
is yet to be any similar investigation for speech imagination.
There are a few EEG studies which have investigated the
comparative performance of brainwaves in decoding such as
Theta band dominance in decoding while speaking various
words [15] or higher decoding performance by Beta band
compared to Alpha and Theta in classifying two syllables [4],
etc. Despite the differences in results, a clear investigation of
the role of brainwaves is still lacking.

Magnetoencephalography (MEG) provides a direct and reli-
able representation of the functional characteristics of the brain
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activity, largely due to its relatively lower signal distortion and
spatial smearing [16]. Also, high-gamma power changes have
been shown to be observable with MEG [17], [18]. Thus, MEG
might be a more suitable modality to investigate the role of
distinct brainwaves in speech decoding including high-gamma
frequencies. In our previous works on neural speech decoding,
we used MEG signals with all brainwaves (0.1 − 125Hz) to
show the feasibility of speech decoding with high performance
[19]–[24]. The high spatial and temporal resolution of MEG
has also been shown to be effective in tracking the fast
temporal dynamics and spatial neuroanatomical distribution in
speech production [25]–[27]. Thus, we used MEG signals to
investigate the role of each neural oscillations in decoding.
To our knowledge, this is the first such investigation using
MEG. We employed three machine learning classifiers namely
support vector machine (SVM), linear discriminant analysis
(LDA), and artificial neural network (ANN) to classify the
MEG signals corresponding to imagination and articulation of
five different phrases and found similar patterns of decoding
performance with each brainwave across the three classifiers.

II. DATA ACQUISITION AND SIGNAL PROCESSING

A. Data Collection

Seven healthy subjects (age = 41y ± 14y; 3 females) partic-
ipated in this study with written consent. Institutional review
board (IRB) approvals have been obtained for this study from
the participating institutions. The MEG machine (MEGIN,
LCC) used (Fig. 1) has 306 channels (204 gradiometers + 102
magnetometers). We used five short phrases as stimuli: 1. Do
you understand me, 2. That’s perfect, 3. How are you, 4. Good-
bye, and 5. I need help. We designed a time-locked protocol to
collect the neuromagnetic signals during speech imagination
and production. After a 0.5 s of pre-stimuli segment, these
stimuli were shown on a screen, one at a time, for 1 s in a
pseudo-randomized order. Then a fixation cross replaced the
stimulus in the next stage of imagination/preparation, where
the subjects were instructed to imagine the phrase and be
prepared to speak. After 1 s of imagination, the screen went
blank which heralded the subjects to overtly produce the
previously shown phrase. A period of (1.5−2.5 s) was allotted
for this articulation segment. This 4-segment time-locked
protocol constituted a trial, and we collected data for 100
such trials for each phrase. We kept a non-movement baseline
of 1 s within successive trials to suppress the overlapping of
cognitive functioning between trials [28]. Jaw motion signals
were collected via a custom-made air bladder with a pressure
sensor. The audio output during articulation was recorded via
a built-in microphone. Both jaw and audio signals were fed to
the MEG ADC as separate channels. Considering the difficulty
in verifying behavioral aspects of speech imagination [29], we
acquired neural signals corresponding to both imagination and
production within a single trial.

B. Preprocessing

We acquired the MEG signals in 4 kHz sampling frequency,
which were low-pass filtered below 250Hz and resampled

Fig. 1. The MEG machine housed inside a magnetically shielded room (MSR)

to 1 kHz. Line noise (60Hz) and harmonics were removed
with a notch filter. We epoched the MEG signals into trials
from −0.5 s to 5 s, centered on stimulus onset. Through visual
inspection trials containing large artifacts were discarded. Out
of 100 trials, on an average 75 trials per phrase were retained
per subject. Only gradiometer channels were used for analysis
considering their high SNR over magnetometers. Flat and
noisy channels were excluded from the data. Out of 204
gradiometers, 196 common valid sensors across subjects were
considered for analysis. The MEG sensor signals were then
decomposed with a discrete Daubechies-4 (db-4) wavelet into
distinct brainwaves. After a 7-level decomposition, the recon-
structed signal from the low pass approximation coefficient at
7th level represented the Delta frequency band (0.1 − 4Hz),
and the reconstructed signals from the high pass coefficients
from each level starting from level 7 to level 2 corresponded
to Theta (4 − 8Hz), Alpha (8 − 16Hz), Beta (16 − 30Hz),
Gamma (31− 58Hz), lower high-gamma (62− 125Hz), and
upper high-gamma (125 − 250Hz) brainwaves respectively.
The use of db-4 wavelet to generate distinct brainwaves has
been employed previously in various MEG studies [22], [30].

III. EXPERIMENTAL RESULTS

To investigate the role of brainwaves in neural speech
decoding, we performed a 5-class classification of the 196-
dimensional MEG signals corresponding to 5 phrases during
imagination and production, in single-trial level taking each
brainwave separately and also taking their orderly combination
(increasing/decreasing frequency range) as input. Even though
on an average 75 trials were retained per phrase across sub-
jects, a total of 60 single trials/phrase were used for unbiased
analysis, since for a subject only 63 trials were retained for
a phrase. Considering the cognitive variance across subjects
[23], [31], we only developed subject-dependent models. We
extracted root mean square (RMS) features from the decom-
posed signals to train the decoders as these were found to be
more significant compared to other statistical features in our
prior works [20]–[22]. SVM was taken as the baseline decoder,
considering their effectiveness in managing high-dimensional
data [32]. A 5-fold cross-validation (CV) strategy was used
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Fig. 2. Comparison of decoding performances with (a) individual brainwaves (b) combination of brainwaves in increasing order of frequency starting from
Delta up to different brainwaves, (c) combination of brainwaves in decreasing order of frequency starting from upper high gamma up to different brainwaves.
Error bars represent the standard error across 7 subjects. * denotes statistical significance with 1-tail t-test with p < 0.05.
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Fig. 3. Comparison of decoding performance with jaw only, MEG brain
waves only, and MEG brainwaves with added jaw information. Error bars
represent the standard error (SE) across 6 subjects.

to train an SVM with 2nd order-polynomial kernel for each
subject and the performance was evaluated by averaging the
five CV accuracies across all 7 subjects. We experimented with
several kernels for SVM including linear, polynomial (2 and
3), Sigmoid, and RBF and then the final kernel (2nd order
polynomial) was chosen based on optimal cross-validation
performance. Kernel scale and C parameter were tuned and
selected based on Bayesian optimization search.

A. Experiment 1: Individual Brainwaves

To find the role of each brainwave in decoding, first,
we trained the SVM with the RMS features extracted from
individual oscillations separately. The feature dimension was
196 corresponding to the 196 gradiometer signals. The de-
coding was performed both for imagination and articulation.
Figure 2(a) shows the result of this analysis. Low frequency
Delta (0.1 − 4Hz) oscillation provided the best classification
accuracy for both imagination (43.01%± SE: 8.26%) and
articulation (66.09%± SE: 9.04%). The decoding performance
with Delta across 7 subjects was significantly higher than
Theta, Alpha, Beta, and Gamma (1-tail t-test, p < 0.05). Ac-
curacy during articulation with lower-high gamma (52.87%±
SE: 5.84%) and upper-high gamma (51.70%± SE: 5.92%)
were not statistically significantly lower than Delta (1-tail t-
test, p = 0.12 & p = 0.10 respectively), but mean accuracies
of these high-frequency brainwaves were about 15% less.
In case of imagination, there was no statistical significance

obtained amongst the different brainwaves (1-tail t-test, p >
0.05), but, the mean accuracy obtained with Delta was about
8%−10% higher than the rest. Performance obtained with all
the brainwaves individually were significantly higher (1-tail
t-test, p < 0.05) than the chance level (20%).

B. Experiment 2: Orderly Combination of Brainwaves

Considering the efficacy of Delta band obtained in the previ-
ous experiment, to reconfirm the significance of this band, first,
we included one higher frequency band at a time in addition
to the Delta-band and performed the decoding. In other words,
first, we included Delta, and Theta bands (net frequency range:
0.1−8Hz) and performed the decoding. Then we used Delta,
Theta, and Alpha (net frequency range: 0.1 − 16Hz) and so
on up to the upper high-gamma frequency (net frequency
range: 0.1 − 250Hz, i.e. all brainwaves combined). Instead
of concatenating the RMS features of different bands, we
reconstructed the signal up to the specific frequency with
wavelets for this analysis for an unbiased input feature size
of different combinations. The results are shown in Fig. 2(b)
which shows a continuous increase in mean accuracy from
Delta only (0.1−4Hz) to Delta-upper high gamma frequency
range (0.1−4Hz), although the increment was not statistically
significant (1-tail t-test, p > 0.05). A similar experiment
with opposite direction of frequency band addition (from high
to low frequency), starting from upper high gamma only
(125− 250Hz) then upper high gamma + lower high gamma
(62− 250Hz) until all brainwaves combined, i.e. up to Delta
from upper high-gamma (0.1−250Hz) yielded a similar result.
With each addition of frequency band, the classification accu-
racy increased. However, the statistically significant increase
in accuracy for articulated phrase decoding was observed when
Delta band was added (1-tail t-test, p < 0.05, between upper
high gamma only and All). For imagination, the increment
was not significant (1-tail t-test, p > 0.05).

C. Experiment 3: Individual Brainwaves with/without Jaw

To verify whether the low-frequency jaw motion is driving
the high performance of Delta, we performed the analysis
by taking jaw signal only, jaw information added to MEG
signal of all brainwaves combined, and then by adding jaw
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Fig. 4. Comparison of decoding performances with individual brainwaves across three decoders during Imagination (left) and Articulation (right)

information to individual bands. The results are shown in
Fig. 3. The average CV accuracy across 6 subjects by taking
only RMS features of jaw signal (1-dimensional feature) was
38.50%± SE: 4.51% which was significantly lower (1-tail
t-test, p < 0.05, Wilcoxon signed-rank test, p < 0.05)
than the average decoding accuracy obtained with RMS fea-
tures of MEG signals (196-dimensional) with all frequency
(0.1 − 250Hz) which was 73.30%± SE: 6.83%. When jaw
RMS feature is concatenated with MEG RMS features (197-
dimensional) the mean accuracy significantly increased by
about 4% to 77.60% ± 5.34% (Wilcoxon signed-rank test,
p < 0.05). Further, when jaw RMS feature was concatenated
with the RMS features of individual brainwaves, a significant
performance improvement was observed for each band across
all subjects (Wilcoxon signed-rank test, p < 0.05). However,
the increment with Delta+Jaw from Delta only was the lowest
(6.12%) compared to the increment of about 12% obtained
when jaw information was added with other brainwaves.

D. Experiment 4: Individual Brainwaves with Three Decoders

All of the previous results were with the 2nd order polyno-
mial SVM with 5-fold CV. To confirm whether the patterns
observed with different brainwaves are significant or classifier
(SVM) dependent we used 2 more classifiers: LDA and ANN,
and repeated the analysis with individual brainwaves (Exper-
iment 1). The same 5-fold cross-validation strategy was used
for these 2 decoders with the same sample size and features.
Automatic hyperparameter optimization was performed to find
the best LDA parameters for Dirichlet distributions. For ANN,
only a single hidden layer with 128 nodes was used, followed
by a sigmoid activation and softmax each with 5 nodes. ANN
was trained with scaled conjugate gradient optimization with
backpropagation. The learning rate was fixed to 0.005, found
based on coarse-to-fine tuning. The comparative results of the
three decoders are shown in Fig. 4 (left) for imagination and
(right) for production, as line plots to visualize the consistency
in the patterns of accuracy across different brainwaves. As
expected, SVM and LDA performed similarly and ANN out-
performed LDA and SVM performance both during imagina-
tion and articulation. However, the interesting observation was
in the consistency in the pattern of performance of different
brainwaves irrespective of the three classifiers.

IV. DISCUSSION

Here, we used the classification accuracy as an index of
contribution for different brainwaves in decoding. Although a
more traditional way of finding the dominance is by visualiz-
ing the time-frequency representations on the averaged trials,
it is difficult to do so for single-trial analysis. The consistency
of higher performance obtained with Delta band for speech
decoding (Fig. 2) has been observed before primarily for per-
ceived speech [14] and the predominance of Delta in auditory
perception of multi-word speech units has been shown [33].
Thus, perception of the subjects speech may be driving this
high decoding performance for articulation. This also explains
the contrasting results obtained in this study to an EEG study
[4] where Beta band dominated classifying two syllables.
Since we used multi-word sentences as stimuli, Delta band
might be reflecting the combinatorial processes underlying the
unification of words to sentences [14]. However, intriguingly,
a higher performance by Delta was also observed during
imagination decoding compared to the rest of the brainwave
frequencies. This may suggest that similar neuro-cognitive
constructs are occurring during imagination as articulation.

It might be argued that low-frequency articulatory jaw
motion might be driving the decoding performance in the Delta
band. To check on this hypothesis, we performed Experiment
3 which suggested that the brain signals alone carry additional
information over that of transmitted by the jaw. These findings
are consistent with our previous work with three subjects
[20]. Adding the jaw information on top of MEG signals,
both individual frequencies and the wide-band, increased
the classification accuracy (Fig. 3) which suggests that the
MEG brainwaves and jaw motion might entail complimentary
information, and that the Delta band encompasses both jaw
motion neural information vital for decoding. Further, the rela-
tive performances across different brainwaves were consistent
with three different classifiers. This provides strong support
in the relative contribution of different brainwaves, higher
contribution of Delta and high gamma frequencies compared
to the rest. However, combining all the frequencies always
provided the best result. Instead of retaining each frequency-
bands power for the multi-band comparison, we chose to
widen the band prior to taking the power to keep the decoding
feature dimensions equivalent across frequency bands. Since
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Delta will always dominate the wide-band spectrum, it may
have diminished the potential influence of the other bands.
Additionally, in our experiments, we considered all the sensors
for analysis. It is also possible that different sensors at different
brainwaves might be dominating the speech imagination or
production process. Thus, in future, we plan to analyze the role
of the combination of brainwaves post-transform and across
individual sensors and their combinations.

V. CONCLUSION

In this study, we investigated the role of individual brain-
waves in decoding speech imagination and production. Signif-
icantly higher performance was observed for the Delta band
which was validated with different experiments. Adding jaw
information to individual brainwaves increased the decoding
performance suggesting that they have complementary infor-
mation. The relative performances across different brainwaves
were found to be consistent after verifying with three different
classifiers. The best performance was obtained when all the
brainwaves are combinedly used for decoding. This study only
used healthy participants and a similar investigation for ALS
patients might provide better insight into the ultimate goal of
speech-BCIs for neurologically impaired patients.
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