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Abstract—In this work, we present a method for learning in-
terpretable music signal representations directly from waveform
signals. Our method can be trained using unsupervised objectives
and relies on the denoising auto-encoder model that uses a simple
sinusoidal model as decoding functions to reconstruct the singing
voice. To demonstrate the benefits of our method, we employ
the obtained representations to the task of informed singing
voice separation via binary masking, and measure the obtained
separation quality by means of scale-invariant signal to distortion
ratio. Our findings suggest that our method is capable of learning
meaningful representations for singing voice separation, while
preserving conveniences of the the short-time Fourier transform
like non-negativity, smoothness, and reconstruction subject to
time-frequency masking, that are desired in audio and music
source separation.

Index Terms—representation learning, unsupervised learning,
denoising auto-encoders, singing voice separation

I. INTRODUCTION

A particular task in music signal processing that has at-
tracted a lot of research interest is the estimation of the singing
voice source from within an observed mixture signal [1].
To that aim, deep supervised learning is shown to yield
remarkable results. Approaches that rely on deep supervised
learning can be discriminated in two categories, the ones that
operate in the short-time Fourier transform (STFT) domain [2],
[3], and we denote as spectral-based approaches, and the ones
that operate directly on the waveform signals [4], [5], that we
denote as waveform-based approaches. Spectral and waveform
based approaches have in common that they implicitly com-
pute source-dependent masks that are applied to the mixture
signal, prior to the reconstruction of the target signals [2]–[5]1.

Although the implicit masking is shown to be a simple
and robust method to learn source dependent patterns for
source separation [6], one could expect that waveform based
approaches would significantly outperform the spectral ones.
That is because waveform based approaches are optimized
using time-domain signals that also contain the phase in-
formation, that unarguably carries important signal informa-
tion [7], [8] and has been neglected by many spectral based
approaches [2], [3], [9], [10]. However, experimental evidence
shows that spectral based approaches have comparable or
marginally better separation performance to the waveform
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1Regarding the masking strategy, we are referring to the adaptation of Conv-
TasNet for music signals also presented in [4].

ones [2], [4], [5]. Since the state-of-the-art (SOTA) methods
for both waveform and spectral approaches rely on deep neural
networks, and in both spectral and waveform approaches
a considerable engineering effort has been directed to the
employed neural architecture, it is evident that the difference
in the performance between the two different approaches can
be attributed to the utilized signal representation. For the
waveform-based ones this is the output of an encoder, but for
the spectral-based it is the non-negative signal representation
offered by the magnitude of the STFT. Thus, we believe that
learning generalized signal representations for music signals
is an intriguing direction for music source separation research.

In this work, we focus on representation learning [11]
for singing voice separation in an attempt to bridge the gap
between spectral and waveform based approaches. To this aim,
we propose a simple method for unsupervised representation
learning from waveform signals, alleviating the need of having
paired training data (i.e., matched multi-track audio data).
However, the method still requires isolated source’s audio sig-
nals. More specifically, our method is based on the denoising
auto-encoder (DAE) model [12], but for the decoding functions
our model for representation learning inherits a simple and
real-valued sinusoidal model. The sinusoidal model consists of
amplitude-modulated cosine functions, and whose parameters
are jointly optimized with the rest of the DAE. The motivation
behind using a sinusoidal model as a decoding function
is to guide (via back-propagation) the encoding layers to
learn and convey information regarding the energy of specific
cosine functions that compose the audio signal, leading to
interpretable representations.

Our method is inspired by the concept of differentiable
digital signal processing [13] where the parameters of common
digital signal processing functions are optimized by means of
back-propagation, and in our case we back-propagate through
the parameters of a simple signal model. Furthermore, our
method is similar to the Sinc-Network presented in [14], that
uses sinc functions in the encoding layers of convolutional
kernels for interpretable deep learning, and its extension to
complex-valued representations for speaker separation [15].
However, our method differs from [15] as the representation
of the proposed method is real-valued, alleviating the cum-
bersome signal processing operations on complex numbers.
It also differs from approaches that initialize the front-end
parts of the networks with cosine functions [16] that are

1412978-9-0827-9705-3 EUSIPCO 2020



then updated by means of back-propagation, by inheriting
the cosine functions as a part of the model to be optimized.
Finally, our method provides an unsupervised alternative to the
source informed method for representation learning presented
in [17]. The rest of the document is organized as follows:
Section II presents the proposed method, Section III describes
the followed experimental procedure, Section IV discusses the
obtained results, and Section V concludes this work.

II. PROPOSED METHOD

Our proposed method employs two functions, the encoder
E, and the decoder D. The input to our method is a music
signal x ∈ RN of N time-domain samples, and the output
is the learned representation of x, denoted as A ∈ RC×T . C
is the number of templates and T is the temporal length of
each template (similarly as the time-frames in STFT-related
representations). The encoder E learns the representation A
with the help of the decoder D. D is responsible for recon-
structing the signal, given the representation computed by E.
The reconstructed signal can then be used to optimize E and
D using a reconstruction objective. To enforce interpretability
for the representation A, we use a differentiable sinusoidal
synthesis model for the decoder D. An illustration of the
proposed method is given in Figure 1.

A. The Encoder

During inference, the encoder E gets as an input any music
signal x and outputs its representation A. In order for E to
yield the representation A, an initial stage of training is per-
formed. During training, two synthetic signals are used. Each
synthetic signal employs the singing voice signal (xv ∈ RN ).
The first synthetic signal is termed as x̃m ∈ RN and is the
result of a corruption process for xv with an additive generic
multi-modal distribution-based noise (e.g. a randomly selected
signal that contains accompaniment music, like a mixture of
drums, guitars, synthesizers, and bass). The second signal is
termed as x̃v and is the result of a corruption process for xv
using additive Gaussian noise.

Both signals x̃m, x̃v are used independently as an input
to E, resulting into two representations Am, Av ∈ RC×T ,
respectively. To compute each representation, E consists of
two one-dimensional strided convolutions, with appropriate
zero-padding. The first operation involves a convolution of
each signal with a set of C number of kernels of temporal
length L and a stride S. The stride S is a hyper-parameter and
affects the expected number of time-frames T by T = dN/Se,
where d·e is the ceiling function. The resulting latent signal
is given to the second convolution, which is a dilated one-
dimensional convolution [18] with C number of kernels, a
smaller temporal length L′ << L, and a stride equal to 1.
The output of the second convolution is updated by means of
residual connections using the output from the first convolu-
tion, followed by the rectified linear unit (ReLU) activation
function [19]. The ReLU function promotes a non-negative
and sparse representation by preserving positive values and

Fig. 1. Overview of the proposed method.

setting the rest to zero [20], and is shown to be particularly
useful in general modelling of audio signals [21].

Another targeted (and useful) property of the representation
is that of smoothness [16], [21], especially useful when real-
valued cosine functions are involved in auto-encoding or
separation models [16]. That is because audio signal modelling
based on cosine functions requires the phase information for
reconstruction. Phase information is usually encoded as the
sign (positive or negative value) of the real-valued represen-
tation that varies along the time-frames of the representation.
Since the negative values are nullified by the application of the
ReLU function, neighbouring time-frames, that convey similar
information for music signals are expected to be non-smooth.
To compensate for that, the second convolution operation
of E is using dilated convolutions that aggregate temporal
information from neighboring time-frames [18], [22].

In order to enforce the learning of smooth representations,
we employ a representation objective that the encoder has to
minimize. Specifically, we use the representation of x̃m, Am,
to compute the total variation denoising [23] (LTV) as

LTV(Am) =
1

CT

(C−1∑
c=1

||Am[c;...] −Am[c−1;...]||

+

T−1∑
t=1

||Am[...;t] −Am[...;t−1]||
)

, (1)

where Am[c;...] and Am[...;t] are the c-th row and t-th column
vectors (respectively) of the matrix Am, and || · || is the `1
vector norm. Eq. (1) penalizes E by the norm of the first order
difference across both time-frames T and templates C. The
former promotes slow time varying representations as the mag-
nitude of the STFT representation, and the latter promotes a
grouping of the template activity. We use Am only to compute
LTV, to enforce the encoder E to yield smooth representations
on the most realistic corruption scenario. This scenario is
the additive generic multi-modal distribution-based noise x̃m
that contains also the information regarding the singing voice
signal xv. Thus, the smoothness for the representation of the
singing voice is implicitly enforced.

B. The Decoder

The decoder D accepts the representation Av, and yields
x̂v which is the approximation of the clean singing voice xv.
Specifically, D models xv as a sum of C signal components
that overlap in RN . The components are computed by a strided
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convolution2 between the representation template Av[c;...] and
the kernel wc ∈ RL of temporal length L as

xv ≈ x̂v :=

C−1∑
c=0

Av[c;...] ∗wc. (2)

Similar to Sinc-Net [14] and it’s complex-valued exten-
sion for speech enhancement [15], we do not allow each
wc to be updated directly using back-propagation. Instead,
we re-parameterize each wc using sinusoidal functions and
back-propagate through their corresponding parameters. More
specifically, we compute each wc using

wc = cos(2πf2c � t+ φc)� bc , (3)

where cos and � are the element-wise cosine function and
product, respectively, and t ∈ ZL is a vector denoting the
integer time indices [0, . . . , L − 1] of the kernels. These
parameters of the cosine function are considered constants and
are shared between the kernels. The sampling-rate-normalized
carrier frequency fc, the phase φc (in radians), and the modu-
lating signal bc are learnable and different for each kernel. The
non-linear squaring operation applied to fc is motivated by the
increased frequency resolution in lower frequencies that music
signals commonly have [1], and is an experimental finding
that is studied in Section IV. Using Eq. (3) for all C, our
method constructs W ∈ RC×L by stacking the corresponding
outcome. After the stacking, a sorting operation is applied to
W, which sorts the kernels wc in ascending order based on
the normalized and squared carrier frequency fc, promoting
an intuitive representation. Then the decoding operation for
Av takes place using Eq. (2).

There are three reasons for using modulated cosine func-
tions for decoding Av : a) cosine functions promote inter-
pretability [14], i.e., the representation A is expected to convey
amplitude related information for driving a well established
synthesis model based on sinusoidal functions [24], b) the
auto-encoding operation shares many similarities with the
STFT yet without having to deal directly with the phase
information, for which supervised based separation works re-
markably well [2], [3], and c) amplitude modulations allow an
extra degree of freedom in reconstructing signals that cannot
be described by pure sinusoidal functions [24]. The latter
statement is supported by the convolution theorem which states
that the element-wise product of two vectors can be expressed
in the Fourier domain as their corresponding convolution.
Since in our re-parameterization scheme (i.e., Eq. (3)) one of
the signals is a cosine function, then bc is expected to convey
information regarding fricatives and/or formants of the singing
voice signal xv. Regarding on whether the proposed decoder
is efficient in reconstructing the singing voice compared to
either cosine functions or commonly employed convolutional
layers, the reader is kindly referred to Section IV.

The optimization objective for D is the negative signal-to-

2Appropriate zero-padding is assumed to be applied in order to deal with
the differences between T and L.

noise ratio (neg-SNR) [25], defined as:

Lneg-SNR(xv, x̂v) = −10 log10
( ||xv||22
||xv − x̂v||22

)
, where (4)

|| · ||22 is the squared `2 vector norm, and the negative sign is
used to cast the logarithmic SNR as a minimization problem.
Using Eq.(4) and Eq.(1) the overall minimization objective is

L = Lneg-SNR + λLTV (5)

where λ is a scalar for weighting the impact of Eq.(1) in
the learning signal. The decoder D computes x̂v only from
the signing voice representation Av. That is because we aim
at learning general representations in an unsupervised and
not discriminative fashion. To achieve that by means of the
DAE model [12], we assume that the distribution of the
corruption process is constant for all segments in the data-
set [26]. This cannot be assumed for music signal mixtures,
as even the distribution of the accompaniment instruments can
vary dramatically from one segment to another. Consequently,
by making such an assumption it could lead to degenerate
representations for singing voice.

III. EXPERIMENTAL PROCEDURE

For training and evaluating the proposed method we use
the MUSDB18 data-set [27] that consists of 150 two-channel
multi-tracks, sampled at 44100Hz and split into training (100
multi-tracks) and testing (50 multi-tracks) subsets. During
training we sample a set of four multi-tracks from which
we use the vocals and the accompaniment sources. Each
sampled multi-track is down-mixed to a single channel and is
partitioned into overlapping segments of N = 44100 samples
with an overlap of 22050 samples. We then randomly shuffle
the segments for each source and corrupt the singing voice
signal as described in Section II. The standard deviation of the
additive Gaussian noise corruption is set to 1e− 4 and is in-
dependent from the signal’s amplitude. A batch of 8 segments
is used for optimizing the parameters of the proposed method,
minimizing Eq. (5) using adam algorithm [28] with a learning
rate of 1e− 4. For choosing the convolution hyper-parameters
we conducted an informal experiment employing 20 tracks
from the training subset, followed by informal listening tests.
This resulted into the following hyper-parameters: C = 800,
S = 256, L = 2048, L′ = 5, D = 10, and λ = 0.5. During the
informal experiments, we observed that the method converges
fast so we set the total number of iterations throughout the
whole data to 10. The choice for N = 44100 samples was
based on the available computational resources.

For evaluation we use the rest 50 tracks, that are down-
mixed and partitioned into non-overlapping segments. The
shuffling and random mixing are not considered in the eval-
uation stage, but silent segments are discarded. We test the
usefulness of the representation by performing informed and
masking-based singing voice separation, following the recently
proposed framework for assessing latent representations for
audio source separation [17]. To that aim, we employ the
trained decoder (according to the previously described pro-
cedure), and reconstruct the time-domain signals of the un-
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corrupted singing voice representation and the binary masked
mixture representation, respectively. The binary mask is com-
puted using the encoded singing voice, accompaniment, and
their corresponding mixture signals, that are available in the
test sub-set. The reconstructed time-domain signals are used
for computing the scale-invariant signal-to-distortion ratio (SI-
SDR) [29] defined as

SI-SDR(xv, x̂v) = 10 log10
(
||αxv||22
||αxv−x̂v||22

)
, for α =

x̃T
v xv

||xv||22
,
(6)

and is used computed for each segment. In the following sec-
tion, we report the median value of SI-SDR across segments
and three experimental runs.

Using the above described procedure, we conduct two
experiments. In the first experiment, we examine whether the
modulated cosine functions (mod-cos) are a good synthesis
model by measuring the reconstruction performance, after
being optimized for the denoising task. We optimize various
models that use the proposed training scheme presented in
Section II without the random mixing corruption processes,
and by employing the early stopping mechanism to terminate
the training procedure if the model has stopped decreasing
the loss expressed in Eq. (4) during the updates of the
previous epoch. We consider various decoding strategies such
as non-modulated cosine functions (cos), and common one-
dimensional convolutional networks (conv) with and without
the tanh non-linearity at the output. We also examine Sinc-
Net [14] (sinc) as the first encoding stage as proposed
in [14]. In this experiment C is adapted so that each model
uses approximately the same number of parameter.

For the second experiment we re-train the best combina-
tion of the above, using various values for the number of
components C ∈ [400, 800, 1600] and perform the reconstruc-
tion of the binary masked mixture signal. To examine the
regularization effect of the total-variation (Eq. (1)) computed
using the random mixing corruption process, we report each
model’s performance by using Eq. (1) for both Av and
Am, respectively. For comparison, we employ the STFT and
perform the above described operations of analysis, masking,
and synthesis. The STFT uses a hop-size of 384 samples, a
window size of 2048 samples, and the hamming windowing
function. The difference between the first and the second
set of experiments is that for the second set of experiments
the modulated cosine functions are sorted after each gradient
update, as explained in Section II-B, whereas in the first they
are not. The sorting is performed for the representation to have
information analogous other cosine related transforms.

IV. RESULTS & DISCUSSION

The obtained results from the two experiments are presented
in Tables I and II. Additional results, illustrations underlining
the interpretability of the representations, and audio examples
can be found online3. Table I demonstrates the median SI-
SDR expressed in dB (the higher the better) yielded by the
first experiment, along with additional information regarding

3https://github.com/Js-Mim/rl singing voice

TABLE I
RESULTS REFLECTING THE DECODING PERFORMANCE, BY MEANS OF
SI-SDR. BOLD-FACED NUMBERS DENOTE THE BEST PERFORMANCE.

E/D Setup Non-linearity C SI-SDR NP

conv/cos N/A 952 20.83 6.483M
f2
c 22.34

conv/conv N/A 800 31.25 6.476Mtanh(decoder) 30.50

conv/mod-cos N/A 800 28.72 6.478M
f2
c 32.62

sinc/mod-cos f2
c 952 26.82 6.487M

TABLE II
SI-SDR FOR INFORMED SEPARATION BY BINARY MASKING (BM).

BOLD-FACED NUMBERS DENOTE THE BEST PERFORMANCE.

E/D Setup C LTV(∗) SI-SDR BM SI-SDR NP

conv/mod-cos

400 Av 30.46 3.66 2.439M
Am 30.73 5.93

800 Av 32.28 4.39 6.478M
Am 32.11 6.28

1600 Av 31.94 4.68 19.356M
Am 31.54 6.68

STFT/iSTFT 1025 N/A N/A 8.80 N/A

the various setups for the encoder E and the decoder D, the
number of parameters NP (in millions M), the used number of
components C, and the employed non-linearities. The results
in Table I highlight three trends. First, the application of the
non-linearity to the normalized frequencies fc results into
better reconstruction performance compared to the linear case.
The observed improvement is of ∼ 5dB on average across
experimental configurations. Secondly, the modulated cosine
functions serve as a good differentiable synthesis model for
singing voice signals, outperforming simple cosine functions
by approximately 8 dB on average, with respect to the two
experimental configurations (with and without frequency scal-
ing of the normalized frequency), and by 1.4 dB the best
configuration of convolution based model (conv). Since SI-
SDR is invariant to scale modifications of the assessed signal,
1.4 dB is a significant improvement of signal quality and
does not imply a simple matching of the gain that the model
based on modulated cosine functions might have exploited.
Thirdly, Sinc-Net [14] does not bring further improvements to
the proposed method.

Focusing on the separation performance of the obtained
representations, Table II presents the median SI-SDR values of
the binary masking separation scenario for three values for the
hyper-parameter C and two regularization strategies including
two different signal representations, the corrupted by Gaussian
noise Av, and the synthetic mixtures using the accompaniment
signals Am. The obtained results are compared to the STFT
that has perfect reconstruction properties and masking tech-
niques work very well in practice [1]. The results of Table II
underline two main experimental findings. The first finding is
that the binary masking can be used to separate sources using
the proposed approach for representation learning. This can be
seen from the C = 1600 model that uses the synthetic mixtures
as an input to the unsupervised representation objective and
achieves a SI-SDR median value of 6.68 dB. The second find-
ing is that the proposed unsupervised representation objective,
i.e., Eq. (1) with the synthetic mixtures, can be used to improve
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the reconstruction of the masked mixture signals without
additional supervision, as previous studies suggest [17]. This
claim is supported by the observed improvement of ∼ 2 dB,
on average across models of various components C, when the
synthetic mixtures are used for the unsupervised representation
objective. Nonetheless, there is much room for improvements
in order to obtain the quality of the STFT/iSTFT approach that
outperforms the best masked approximation of the proposed
method by 2.12 dB.

V. CONCLUSIONS

In this work we presented a method for learning music
signal representations in an unsupervised way. Our method
is based on the denoising autoencoder model [12] and the
differential digital signal processing concept [13]. The befits
of our method are interpretability, non-negativity for real-
valued music signal representations for driving an established
synthesis model, based on cosine functions. We conducted
a series of experiments where we investigated the recon-
struction capabilities of the proposed method subject to auto-
encoding and informed source separation using binary masks.
Our results demonstrate a reconstruction above 30 dB of
scale-invariant signal-to-distortion ratio, and that separation
by masking is possible using the obtained representation.
The latter, opens up directions for supervised approaches to
masking-based separation. However, compared to the short-
time Fourier transform and its inverse counterpart our results
suggest that there is much room for improvements in order to
achieve the benefits of the STFT.
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