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Abstract—Multi-view data analysis has gained increasing pop-
ularity because multi-view data are frequently encountered in
machine learning applications. A simple but promising approach
for clustering of multi-view data is multi-view clustering (MVC),
which has been developed extensively to classify given subjects
into some clustered groups by learning latent common features
that are shared across multi-view data. Among existing ap-
proaches, graph-based multi-view clustering (GMVC) achieves
state-of-the-art performance by leveraging a shared graph matrix
called the unified matrix. However, existing methods including
GMVC do not explicitly address inconsistent parts of input
graph matrices. Consequently, they are adversely affected by
unacceptable clustering performance. To this end, this paper
proposes a new GMVC method that incorporates consistent and
inconsistent parts lying across multiple views. This proposal is
designated as CI-GMVC. Numerical evaluations of real-world
datasets demonstrate the effectiveness of the proposed CI-GMVC.

I. INTRODUCTION

Many machine learning applications such as image clas-
sification, social networks, chemistry, signal processing, web
analysis, item recommendation, and bioinformatics analysis
usually exhibit some structured data, which might include
trees, groups, clusters, paths, sequences [1]–[3], and graphs
[4]. Recent advances in information-retrieval technologies
enable collection of such structured data with heterogeneous
features from multi-view data. For example, each web page
includes two views of text and images. Image data include
multiple features such as color histograms and frequency
features of wavelet coefficients. The emergence of such multi-
view data has raised a new question: how can such multiple
sets of features for individual subjects be integrated into
data analysis tasks? This question motivates a new paradigm,
called multi-view learning, for data analysis with multi-view
feature information. Multi-view learning fundamentally makes
use of common or consensus information that is presumed
to exist across multi-view data to improve data analysis
task performance. One successful subcategory of multi-view
learning is multi-view clustering (MVC), which classifies given
subjects into subgroups based on similarities among subjects
[5]. Although various approaches have been proposed in this
category, graph-based multi-view clustering (GMVC) has re-
cently garnered increasing attention: it has demonstrated state-
of-the-art performance for numerous applications [6]–[14].

Fundamentally, GMVC originates from single-view spectral
clustering methods. It performs clustering tasks by exploiting
consensus features across input graph matrices such as adja-
cency matrices. Among them, some works outperform other
methods by seeking a consensus matrix called a unified matrix
from the input graph matrices with adaptive weights such that
the unified matrix directly represents the final clustering result
[7], [9], [10], [13], [15].

Most existing methods achieve good performance by ex-
ploiting the consensus part across multiple views. However,
each view might include an inconsistent part that does not
appear in other views because of noise and outliers. Therefore,
this inclusion might lead to severe degradation of downstream
clustering performance. Nevertheless, they do not deal explic-
itly with such inconsistent parts of the input graph matrices.
Consequently, they offer only unacceptable performance.

To alleviate this issue, this paper presents a proposal of
graph-based multi-view clustering, which particularly incor-
porates a consistent part and an inconsistent part lying across
multiple views. More concretely, we separate the input graph
matrices collected from multi-view data into a consistent
part and an inconsistent part by orthogonality constraints.
This conceptualization shares similar ideas with some recent
works [16], [17]. Derivation of the unified matrix is therefore
more efficient and more robust than existing GMVC methods,
leading to improvement of the clustering performance. We
designate this proposed algorithm as CI-GMVC. Numeri-
cal evaluations conducted with comparison to state-of-the-art
multi-view clustering methods reveal the effectiveness of the
proposed CI-GMVC on several real-world datasets. The source
code is available at https://github.com/hiroyuki-kasai.

II. PRELIMINARY EXPLANATION

This subsection first presents a summary of the notation
used in the remainder of this paper. Subsequently, we briefly
introduce multi-view clustering and specifically address graph-
based multi-view clustering, which are basic techniques of the
proposed algorithm: CI-GMVC.

A. Notation

We represent scalars as lower-case letters pa, b, . . .q, vectors
as bold lower-case letters pa, b, . . .q, and matrices as bold-face
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capitals pA,B, . . .q. The i-th element of a and the element
at the pi, jq position of A are represented respectively as ai
and Aij . Also, the vector of the i-th row vector Ai: and the
vector of the j-th column vector A:j are denoted respectively
as ai and aj . 1d is used for the d-dimensional vector of
ones, and Id is the identity matrix of size d ˆ d. Rnˆm

`

represents a nonnegative matrix of size n ˆ m. Additionally,
A ě 0 and A ą 0 respectively represent Aij ě 0 and
Aij ą 0 for all pi, jq. Furthermore, A ě B and A ą B
represent Aij ě Bij and Aij ą Bij for all pi, jq. Operators
Trp¨q and p¨qT respectively stand for the matrix trace and
transpose. Operator maxpA,Bq outputs Aij when Aij ě Bij

at the pi, jq-th position, and Bij otherwise. Operator vecpAq

performs the vectorization of A. Operator diagpaq represents
A of which diagonal and off-diagonal elements are a and
zeros, respectively. Regarding multi-view data, N , V , and C
respectively represent the number of sample data, views, and
classes. The dimensions of sample data of the c pP rCsq-th
class in the v pP rV sq-th view are denoted as dv .

B. Multi-view clustering: MVC

Multi-view learning fundamentally makes use of common
or consensus information across multi-view data [18]–[21].
Multi-view discriminant learning, a supervised learning tech-
nique, has been studied extensively [22]–[29]. It generally
originates from single-view linear discriminant analysis such
as Fisher linear discriminant analysis (LDA or FDA) [30].
Regarding unsupervised learning techniques, however, multi-
view clustering (MVC) clusters given subjects into several
groups such that the points in the same group are similar and
the points in different groups are dissimilar to one another
by combining multi-view data [5]. One naive approach of
MVC is to perform a single-view clustering method against
concatenated features collected from different views. How-
ever, this approach might fail when higher emphases are
put to certain specific views than to others. Consequently,
this category of research has attracted more attention, to
include multi-view subspace clustering that learns common
coefficient matrices [31], [32], multi-view nonnegative matrix
factorization clustering that learns common indicator matrices
[33], multi-view k-means [34], multi-kernel based multi-view
clustering [35] and CCA based multi-view clustering [36].

C. Graph-based multi-view clustering: GMVC

Different from the approaches described above, graph-based
MVC (GMVC) learns common eigenvector matrices or shared
matrices, and empirically demonstrates state-of-the-art results
in various applications. General steps consist of (i) generating
an input graph matrix, called SIG, (ii) generating the graph
Laplacian matrix, (iii) computing the embedding matrix, and
(iv) performing clustering into groups using an external clus-
tering algorithm. These steps are shared with the normalized
cut [37] and the spectral clustering [38]. Furthermore, GMVC
is related closely to multi-view spectral clustering [39]–[45].
Recently, some works of GMVC address the unified matrix
UpP RNˆN

` q with different effects of multiple graph matrices

as [7], [9], [10], [13], [15]. More noteworthy is that, whereas
many MVC methods rely on an external clustering algorithm
after learning, they seek a unified graph matrix such that it
internally indicates cluster information.

More specifically, considering an adaptive weight α “

rα1, . . . , αv, . . . , αV sT pP RV q on all V SIG matrices
tS1, . . . , Sv, . . . , SV upP RNˆN

` q, the following minimization
problem is formulated with respect to U:

min
U

V
ÿ

v“1

αv}U ´ Sv}2F

subject to Uij ě 0,1Tui “ 1, (1)

where α represents the weight vector α, calculated as αv “

1{p2
a

}U ´ Sv}2F q, as in [9], [13], [15]. Furthermore, the
graph Laplacian matrix LUpP RNˆN q of U is introduced
such that U directly produces the clustering result without
relying on external clustering methods. For this purpose,
acknowledging that U can be partitioned into C groups directly
when rankpLUq is equal to n´C [46], and using Fan’s theorem
[47], the following formulation is proposed:

min
U,F,α

V
ÿ

v“1

αv}U ´ Sv}2F ` 2λ ¨ TrpFT LUFq

subject to Uij ě 0,1Tui “ 1,FT F “ IC , (2)

where λpą 0q is a regularization parameter. FpP RNˆCq is an
embedding matrix, which lies on the orthogonal matrix, i.e.,
the Stiefel manifold Stpp, dq; the Riemannian submanifold of
orthonormal matrices M“tXPRdˆp :XXT “Ipu.

III. PROPOSED CI-GMVC: CONSISTENCY-AWARE AND
INCONSISTENCY-AWARE GMVC

As explained in Section II-C, GMVC considers consensus
features across input graph matrices, i.e., SIG matrices, across
multiple views. The hypothesis in this scheme relies on the
assumption that all SIG matrices tS1, . . . , Sv, . . . , SV u share
common features across multi-views with appropriate weights.
Subsequently, U can be obtained efficiently from these ma-
trices. However, as explained in Section I, the SIG matrices
Sv are not perfect: they might be corrupted because of noisy
input data, severe outliers, and latent fundamental inconsistent
structures [16]. Consequently, any analysis of these matrices
might result in unacceptable clustering results. Therefore, it is
necessary to handle inconsistent parts among multi-view data
to avoid lower quality of subsequent clustering.

To alleviate this issue, we separate Sv into a consistent part
and an inconsistent part that exist as mixed inside Sv , and cal-
culate U only from the consistent parts of Sv . More concretely,
we assume that Sv consists of a consistent part AvpP RNˆN q

and an nonnegative inconsistent part EvpP RNˆN
` q as Sv “

Av ` Ev which follows [16], [17]. Assuming further that the
elements of Ev are not shared in other Ewpv ‰ wq, in other
words, expecting that they are element-wise orthogonal, we
assign a penalty as

V
ÿ

v,w“1

γ ¨ vecpEvqTvecpEwq “

V
ÿ

v,w“1

γ ¨ TrpEv ¨ pEwqT q,
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where γpą 0q is a weighting hyperparameter. Furthermore, a
penalty of larger elements of Ev is regarded as stabilizing the
optimization of the objective function as

V
ÿ

v“1

β}vecpEvq}22 “

V
ÿ

v“1

β ¨ TrpEv ¨ pEvqT q,

where βpą 0q is a weighting hyperparameter. Integrating the
two penalties above yields the following penalty term.

V
ÿ

v,w“1

bvw ¨ TrppSv ´ Avq ¨ pSw ´ AwqT q.

Therein, bvw represents the pv, wq-elements of BpP

RV ˆV q, of which diagonal and off-diagonal elements respec-
tively correspond to β and γ. Finally, we derive the objective
formulation mathematically as presented below:

min
U,F,α

A1,...,AV

V
ÿ

v“1

αv}U ´ Av}2F ` 2λTrpFT LUFq

`

V
ÿ

v,w“1

bvw ¨ TrppSv ´ Avq ¨ pSw ´ AwqT q(3)

subject to Uij ě 0,1Tui “ 1,FT F “ IC ,Sv ě Av ě 0.

As shown there, the differences one can note in relation to
existing works are that the unified matrix U is evaluated with
Av , i.e., the consistent part of Sv , and the inconsistent part
Sv ´ Av are evaluated with Sw ´ Awpv ‰ wq in terms of their
mutual orthogonality.

IV. OPTIMIZATION ALGORITHM

The objective function in (3) is not jointly convex on all
variables. Therefore, the alternating minimization algorithm
is exploited to obtain the solutions. Note that, as mentioned
earlier, α is calculated as αv “ 1{p2

a

}U ´ Av}2F q, as in [9],
[13], [15].

A. Update of F and U
The updates of F and U are similar to those of [15].

However, for the self-contained explanation, we briefly de-
scribe their update rules. The optimization problem in (3) with
respect to the unified matrix U yields the following:

min
U

V
ÿ

v“1

αv}U ´ Av}2F ` 2λ ¨ TrpFT LUFq

subject to Uij ě 0,1Tui “ 1.

This is equivalent to the following minimization problem in
terms of ui for i P rN s as

min
ui

V
ÿ

v“1

}ui ´ pavqi `
λ

2V αv
pi}

2
2 (4)

subject to Uij ě 0,1Tui “ 1,

where pi “ rppiq1, ppiq2, . . . , ppiqj , . . . , ppiqN sT pP RN q and
where ppiqj is equal to }f i

´ f j
}22; f i

pP R1ˆCq is the i-th
row vector of F. This problem is solvable as in Section 5.3

in [15]. Finally, the optimization problem in (3) in terms of F
under fixed U, A, α is

min
F

TrpFT LUFq, subject to FT F “ IC . (5)

The solution is obtainable to calculate the C eigenvectors
of LU, of which eigenvalues are the C smallest ones [38].

B. Update of A
Keeping F, U, α as fixed, the minimization problem about

Av is defined as

min
A1,...,AV

V
ÿ

v“1

αv}U ´ Av}2F

`

V
ÿ

v,w“1

bvw ¨ TrppSv´Avq¨pSw ´ AwqT q

subject to Sv ě Av ě 0.

The first-order necessary optimality conditions of this prob-
lem are that its gradient with respect to Av is expected to be
zero, which means

2αvpU ´ Avq `

V
ÿ

w“1

bvwp´Sw ` Awq “ 0,

for v “ 1, 2, . . . , V . Consequently, we obtain the following.

2αvAv `

V
ÿ

w“1

bvwAw “ 2αvU `

V
ÿ

w“1

bvwSw. (6)

Here, because the left-hand terms are represented as bv1A1`

¨ ¨ ¨ ` pbvv ` 2αvqAv ` ¨ ¨ ¨ bvV AV , its vectorization form is
represented as

rbv1 bv2 ¨ ¨ ¨ pbvv ` 2αvq ¨ ¨ ¨ bvV s

¨

˚

˝

vecpA1qT

...
vecpAV qT

˛

‹

‚

.

Adding all V terms of Av yields the following.

¨

˚

˚

˚

˚

˚

˚

˝

b11`2α1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ b1V
...

. . . ¨ ¨ ¨ ¨ ¨ ¨
...

bv1 ¨ ¨ ¨ bvv`2αv ¨ ¨ ¨ bvV
... ¨ ¨ ¨ ¨ ¨ ¨

. . .
...

bV 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ bV V `2αV

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˝

vecpA1qT

...
vecpAV qT

˛

‹

‚

.

Denoting 2diagpαq`B pP RV ˆV q as C, and the right-hand
terms in (6) as Hv pP RV ˆV q, we calculate Avpv P rV sq as

¨

˚

˝

vecpA1qT

...
vecpAV qT

˛

‹

‚

“ C`
¨

¨

˚

˝

vecpH1qT

...
vecpHV qT

˛

‹

‚

, (7)

where C` is the inverse or the pseudo-inverse matrix of C.
Finally, considering the constraint of Sv ě Av ě 0, the

final solution of Av is obtainable by outputting A2
v as

A1
v “ maxpAv, 0q, A2

v “ minpA1
v,Svq. (8)

The overall algorithm of the proposed CI-GMVC is sum-
marized in Algorithm 1.
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Algorithm 1 CI-GMVC optimization algorithm
Require: Unified matrix U.
Ensure: SIG matrix S1, . . . ,SV , cluster number C, λ, β, γ.

1: Initialize αv “ 1{V and Av “ Sv for v P rV s.
2: Initialize U from α weighted summation of S1, . . . , SV .
3: Initialize F using (5).
4: Update α as αv “ 1{p2

a

}U ´ Av}2F q.
5: Update U with F, A, α fixed using (4).
6: Update F with U, A, α fixed using (5).
7: Update A with F, U, α fixed using (7) and (8).
8: Repeat the steps presented above until U converges or the

predefined maximum number of iterations is reached.

V. NUMERICAL EVALUATIONS

This section presents empirical evaluation of the pro-
posed CI-GMVC with some real-world datasets. We com-
pare the proposed algorithm with state-of-the-art methods,
which include Multi-view Spectral Clustering (MSC)1 [41],
Co-regularized Spectral Clustering (CoregSC)2 [40], Multi-
ple Graph Learning (MGL)3 [7], Multi-view Clustering with
Graph Learning (MCGL)4 [13], and and Graph-based System
(GBS)5 [15]. As for GBS and our proposed CI-GMVC meth-
ods, the SIG matrix is generated by following Algorithm 1
in [15] with the number of neighbors k “ 15. The hyper-
parameters for our proposed CI-GMVC are β “ 10´12 and
γ “ 10´5, which are obtained from preliminary experiments.

Datasets summarized in TABLE I are the following. The
BBC (BBC) dataset6 includes news articles from the BBC
news website. The number of articles is 685. Each has one of
five topical labels. The Newsgroup (NG) dataset7 is collected
from the 20 News-group datasets, which has 500 newsgroup
documents. This has five topical labels. The WebKB dataset8

has four classes; it includes 203 web-pages. Each web-page
consists of the anchor text of the hyperlink, its title, and the
page content. The One-hundred plant species leaves (100 leaf)
dataset9 includes three views of which one has 1600 samples.
Each belongs to one of the one hundred plant species.

TABLE I
FEATURES OF DATASETS USED FOR THIS EXPERIMENT.

dataset N V C dimensions of each view
d1 d2 d3 d4

BBC 685 4 5 4659 4633 4665 4684
NGs 500 3 5 2000 2000 2000 –

WebKB 203 3 4 1703 230 230 –
100leaves 1600 3 100 64 64 64 –

1Source code available at https://github.com/frash1989/
ELM-MVClustering/tree/master/RMSC-ELM.

2Source code available at http://legacydirs.umiacs.umd.edu/„abhishek/
code coregspectral.zip.

3Source code available at http://www.escience.cn/people/fpnie.
4Source code available at https://github.com/kunzhan/MVGL.
5Source code available at https://github.com/cswanghao/gbs.
6http://mlg.ucd.ie/datasets/segment.html.
7http://lig-membres.imag.fr/grimal/data.html.
8https://linqs.soe.ucsc.edu/data.
9https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+

leaves+data+set.

A. Convergence behavior
The objective function in (3) is not convex on all variables.

Therefore, this subsection confirms the convergence behaviors
of our proposed CI-GMVC compared with GBS, which out-
performs others. For a fair comparison, we evaluate the objec-
tive function without regularizers (3), i.e.,

řV
v“1 αv}U ´ Sv}2F

in (1), and use the same stopping condition as that used for
GBS. As Fig. 1 shows, the convergences of CI-GMVC on the
WebKB and 100 leaf datasets are faster than those of GBS.

(a) WebKB dataset (b) 100 leaf dataset

Fig. 1. Convergence behaviors of CI-GMVC compared to those of GBS.

B. Clustering performance
This subsection presents comparisons of clustering perfor-

mance. The results of ACC and NMI are shown respectively
in TABLE II and TABLE III, where the average scores of
the accuracy (ACC) and the normalized mutual information
(NMI) are shown. The best performances are presented in
bold. Results aside from those of GBS and CI-GMVC are from
those in [15]. The results demonstrated that the proposed CI-
GMVC is comparable to or outperforms other state-of-the-art
methods.

TABLE II
AVERAGE CLUSTERING PERFORMANCE (ACC).

method BBC NGs WebKB 100leaves
CoregSC [40] 47.01 27.68 59.70 77.06
MSC [41] 62.32 31.12 47.34 73.79
MGL [7] 53.96 82.18 73.84 69.04
MCGL [13] 35.33 24.60 54.19 81.06
GBS [15] 69.34 98.20 74.38 82.44
CI-GMVC (proposed) 70.36 98.40 77.34 82.44

TABLE III
AVERAGE CLUSTERING PERFORMANCE (NMI).

method BBC NGs WebKB 100leaves
CoregSC [40] 28.63 8.80 31.39 91.65
MSC [41] 55.31 9.72 22.37 90.14
MGL [7] 36.97 83.04 43.62 87.53
MCGL [13] 7.41 10.72 8.60 91.30
GBS [15] 56.27 93.92 37.83 93.43
CI-GMVC (proposed) 58.59 94.61 47.01 93.52

VI. CONCLUSIONS

The proposed graph-based multi-view clustering method
CI-GMVC particularly incorporates the consistency and the
inconsistency structure lying across multiple views. Numerical
evaluations using several real-world datasets demonstrated the
effectiveness of the proposed CI-GMVC.
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