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Abstract—The main aim of the Spectrum Sensing (SS) in
a Cognitive Radio system is to distinguish between the binary
hypotheses Hy: Primary User (PU) is absent and H;: PU is active.
In this paper, Machine Learning (ML)-based hybrid Spectrum
Sensing (SS) scheme is proposed. The scattering of the Test
Statistics (TSs) of two detectors is used in the learning and
prediction phases. As the SS decision is binary, the proposed
scheme requires the learning of only the boundaries of Hj-class
in order to make a decision on the PU status: active or idle.
Thus, a set of data generated under H, hypothesis is used to
train the detection system. Accordingly, unlike the existing ML-
based schemes of the literature, no PU statistical parameters
are required. In order to discriminate between HO-class and
elsewhere, we used a one-class classification approach that is
inspired by the Isolation Forest algorithm. Extensive simulations
are done in order to investigate the efficiency of such hybrid SS
and the impact of the novelty detection model parameters on the
detection performance. Indeed, these simulations corroborate the
efficiency of the proposed one-class learning of the hybrid SS
system.

I. INTRODUCTION

The ever increasing demand on the wireless technologies

pushed the communication community to tackle the problem
of the spectrum scarcity. Cognitive Radio is one of the
proposed solutions, which aims at utilising the frequency
spectrum efficiently. The efficient use is based on sharing
the spectrum between Unlicensed users, namely known as
Secondary User (SU) and Primary User (PU). SU could
access the frequency channel only when PU is absent. Thus,
sensing the PU status, whether it is absent or active becomes
an essential function of SU. To do so, Spectrum Sensing (SS)
is responsible to verify the primary channel status by deriving
a Test Statistic on the received signal such as Energy Detector
(ED) [1], Cumulative Power Spectral Density (CPSD) detector
[2], Cyclostationary detector [3], [4], etc [5].
In classical SS, TS is compared to a predefined threshold in
order to make a decision on the PU status. When the TS is
above a certain threshold PU is considered as active. In fact,
this approach predetermines that the statistical distribution of
TS is known, which is not always possible due to the unstable
ans unknown statistical properties of the noise, the PU signal,
and the channel.

To overcome the statistical problems of the classical
SS and improve its performance, several works have been
published proposing the adoption of the Machine Learning
(ML) and the neural networks’ techniques in order to make
decision on the PU channel occupancy [6]-[12]. The main
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aim of the proposed works is to learn a statistical model for
both statuses: the first one is Hy when PU is assumed to be
absent, and H; when PU is assumed to be active.

In [8], ML techniques such as the K-Means and Support-
Vector Machine (SVM) are used to distinguish between the H
and H; hypotheses in a cooperative SS. Two low-dimension
probability vectors related to both Hy and H; of ED are used
in order to train the system. SVM is used in order to set
the threshold curve between H, and H; clusters. However,
the proposed algorithm requires the pre-knowledge of the
probability density function of ED under both Hy and Hi,
which is not always available since the PU signal statistical
parameters are not always known.

In [9], [10], Artificial Neural Network (ANN) have been
proposed in order to perform a hybrid SS. ANN is trained
using the TSs of two detectors related to Hy and H;(in
[9] ED and Cyclostationary Detector are used, and in [10]
ED and likelihood ratio statistics are used). However, the
application of the ANN requires the statistical parameters
of the PU signal, which may be hard to be known in a
CR context where the SU may deal with a great variety of
primary signals.

Moreover, all the aforementioned works assumed two
classes of PU activities: the first one lies with Hy and
the second is related to H;. The latter class is related to
the statistical properties of PU signal, such as the energy,
the cyclo-stationary features, the sampling rate, etc. These
statistical properties are not always available neither stable.
Regarding the stability, PU may vary its transmit power, this
may impact the position of the classifier hyper-plane line
in ML techniques when distinguishing between the HO and
H1 classes. Furthermore, SU may deal with a great variety
of signal types, as CR is based on the dynamic spectrum
allocation. This variety makes the model learning process
with all PU signals of the accessible channels very expensive.

In SS, as stated above, only two hypotheses are available.
In other words, when the hypothesis Hj is eliminated, then
H; is surly considered as the active state. Motivated by this
fact, in our work the detection decision is based on a learning
stage of only Hy-class. The main contributions of this paper
can be presented as follows:

1)  SS is performed without any need for the statistical
parameters of the primary signal.

2)  Hybrid Spectrum Sensing is applied, where the model
is trained using records of two detectors under Hj.
This fact enhances the accuracy of the sensing per-
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Fig. 1. The Scattering of (ED, CPSD) for N=1000 samples, 1000 trials and

different values of SNR.

formance compared to using the data of only one
detector.

3) A novelty detection approach based on Isolation
Forest (iForest) [13] is adopted. We assume that we
only observe examples of one class (Hp) and the
second hidden class (H1) is considered as the novelty
element class.

4)  The performance of the one-class hybrid detection is
discussed according to the parameters of the learning
technique and how they impact the detection perfor-
mance.

II. SYSTEM MODEL

The decision in SS is binary where two hypotheses must
be distinguished:

Hy : PU is absent (1)
H, : PU is active 2)

In classical SS, a detection method is applied on the received
signal in order to outcome a TS. This TS leads SU to decide
on the PU activity by comparing it to a predefined threshold.
Accordingly, two classes of TS values have to be defined:
Hy-class and H;-class related to the hypotheses Hy and H;
respectively. In fact, Hp-class depends only on the system
parameters such as the noise and the hardware imperfections,
in other words it is independent from the PU signal as the
received signal y(n) can be presented as follows:

y(n) = w(n) under Hy 3)
y(n) = s(n) + w(n) under H; 4)

where w(n) is an Additive White Gaussian Noise (AWGN) and
s(n) is the PU signal to be detected, including the channel
effects. Knowing that TS is a function of y(n), Hy-class
becomes independent of the PU signal as shown in (3).

In our system model, we assume that the SS is hybrid, i.e. SU
uses more than one detector. The results of the detectors must
be combined in order to make a decision on the PU activity.
Figure 1 shows the scattering of two detectors: Energy Detector

1684

(ED) and Cumulative Power Spectral Density (CPSD) detector
that are defined respectively as follows [1], [2]:

1 N
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(6)

where N is the number of received samples, Y (m) is the
discrete Fourier transform of y(n), and o2 is the noise
variance.

Unlike Hy-class, the scattering of H;-class values is a function
of SNR as the Hj-class changes its position in the scattering
space with the SNR (see figure 1). In order to distinguish
between H- and H;-class, the first idea which comes from the
figure 1 is to use the available data to determine the optimal
limit between these two classes. However, in a given scenario
where the SNR is unstable, unknown, or relatively weak , set
a threshold curve between Hy and H; classes becomes hard to
do. Note that other parameters such as the oversampling rate,
the cyclic frequencies, the modulation type or order, etc. may
impact the measure of the related TSs.

III. PROPOSED ONE-CLASS HYBRID SPECTRUM SENSING

Let V = (v1,v2) be the vector of the evaluated values of
the two detectors, ED and CPSD, used in the SS. Hy-class is
trained from the values of V', when PU is absent. Accordingly,
each value outside Hjy-class has to be considered to be in
Hi-class. Accordingly, instead of profiling the Hy behavior,
we aim to isolate the novel and unusual observations. These
unusual observations are considered belonging to H;-class.
This approach may be sufficient to make a decision on the
PU’s activities:

V € Hy-class — PU is absent @)
V ¢ Hy-class — PU is active 8)

Indeed, the main challenge becomes how to isolate the unusual
observations of the so-called H;-class. To achieve our goal, we
assume that SU is capable to generate N, trials of V' under
Hy. Based on these NN; values, the boundaries of Hy-class
are virtually estimated. Note that no cooperation with PU is
required at this stage as the Hy-class values are independent
from the PU signal. As depicted in figure 1 H( data are gath-
ered in a well distinguishable location is the scattering space.
Here, H; instances become considered as novelty compared to
H)j instances, which represents the normal ones. Subsequently,
one of the powerful techniques, that can distinguish between
unusual and usual instances is the iForest [13].

A. One-Class based learning model

Isolation Forest (iForest) is a learning algorithm that iso-
lates anomalies from the rest of normal instances, instead of
profiling the normal behavior. This strategy is well adopted for
the one-class training paradigm. Indeed, iForest introduces the
use of anomaly score rather than the commonly used distance
and density measures for the novelty detection [14], [15].
The iForest starts with a training phase, Binary trees (iTrees)
are constructed using sub-samples of random instances. In



these trees, Partitions are generated by selecting a feature
and then selecting a random split value between the selected
feature’s minimum and maximum value. iForset takes only
two parameters, the number of trees and the subsampling
size. To avoid problems due to tree algorithm randomness, the
process is repeated several times and the average path length
is calculated. The anomalies are those cases of short average
path lengths on the iTrees. After several iterations the mean
path length converges. Each algorithm for anomaly detection
will calculate its data points and instances, and measure the
confidence of the algorithm in their possible anomalies. In
iForest, the leading and distinguishing insight is that anomalies
remain closer to the root of the tree. The anomaly value is
known as the path length h(z), where x is the number of edges
crossed from the root node. The anomaly score is defined as
[13]:

E(h(z))

s(x,n) =27 e 9

where E(h(z)) is the average path length of observation z,
c(n) is the average path length of unsuccessful search in a
Binary Search Tree, and n is the number of external nodes.
An anomaly score is given to each observation and the
following decision can be made on its basis: a score close
to 1 indicates anomalies, score much less than 0.5 indicates
regular observations. If a is score is equal to 0.5 then it does
not have a clear anomaly.

The training stage of our one-class based learning process has
been inspired from iForest. In this stage, we build binary trees
using sub-samples of Hj training set. At testing stage, we
calculate the novelty score by the same way as an anomaly
score (9) for each instance using the trained binary trees.

IV. NUMERICAL RESULTS

In this section, the efficiency of the proposed scheme is

numerically evaluated under several scenarios related to the
iForest parameters, and the effect of SNR. The evaluation is
based on the probability of detection P; and the probability of
false alarm Py,. Py represents a True Negative decision of the
iForest system, while Py, stands for a False Positive decision.
Increasing the detection PU signal is a main challenge for
SU, and this requires an efficient detection performance, so a
high True Negative accuracy is required. On the other hand,
the SU data rate should be increased as possible in order to
achieve a high spectral efficiency. For that reason, Py, should
be minimized as possible.
Without loss of generality, the data generated to learn the
system is based on an AWGN noise with a zero mean and
unit variance. The PU signal, which is not involved in the
training stage, is assumed to be 16-QAM modulated with an
over-sampling factor of 4. The TSs related to ED and CPSD
are found based on 1000 received samples of y(n) under both
H() and H 1.

To figure out the effects of the subsampling on the per-
formance of the hybrid ED-CPSD detector, figure 2 depicts
the evolution of P;, when the subsampling size varies. These
results come out for P, = 0.1. For low SNR —24 dB
to —15 dB, P; increases with the size of the subsampling
while this size is lower than 4000. Beyond this value Py
becomes constant. On the another hand, P, is not affected
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Fig. 2. The effect of the sub-sampling on P, of the iForest-based one class
HSS for various values of SNR. Py, is fixed to 0.1.

by the size of subsampling when the SNR is relatively high
(-6 dB) as shown in figure 2 as for such value of SNR the
classification becomes easier to the system due to the fact
that Hy-instances and H;-instances are practically separated.
In order to show the efficiency of the one class based HSS,
figures 3(a) and 3(b) show the variation of P, in terms of SNR
for a constant Py, = 0.1 and Py, = 0.05. Three detection
scenarios are taken: ED, CPSD, and hybrid ED-CPSD. The
hybrid detection outperforms both ED and CPSD for the both
values of Py,. The simulations of fig. 3(a) and 3(b) are based
on a Number of trees and a subsampling size equal to 100
and 8192 respectively. For SNR=—15 dB and Py, = 0.1 the
hybrid ED-CPSD achieves P; = 0.6 while P; of ED and
CPSD are 0.3 and 0.37 respectively. For a SNR of —12 dB,
the P, of hybrid ED-CPSD exceeds 0.9 while the classical ED
achieves only 0.6. On the other hand, P; showed by figure
3(a) is higher than the one of 3(b) due to the variation of Py,.
When Py, is low, the contamination becomes more stringent
which adversely impact the detection probability. However,
when the contamination is less stringent Py, and P, increase
accordingly.

Figure 4 shows the impact of the number of trees on
the accuracy convergence of the proposed iForest-based HSS.
The accuracy is evaluated on the percentage of the True
Positive and the True Negative relative to the overall of the
validation instances. Standard deviation is evaluated based on
the experiment outcomes of the iForest-based HSS for 100
iterations. The accuracy in terms on the number of trees is
found for several SNRs. As it can be shown in figure 4, the
accuracy average is constant relative to the number of trees
for a given SNR. In contrast, the standard deviation increases
as the number of trees decreases. However, for a relatively
high SNR (i.e. SNR=-9 dB), the standard deviation is closed
to zero. This is because distinguishing the novelty instances at
such SNR becomes an easy task.

V. CONCLUSION

In this paper, SS in CR is performed using one-class based
learning. Unlike existing ML based SS, in our work no pre-
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Fig. 3. The evolution of Py in terms of SNR for P, = 0.1 and Py, = 0.05.
Results ED, CPSD and HSS with ED-CPSD are presented. The Number of
trees and the subsampling size are set to 100 and 8192 respectively.

information on the PU is required. HSS is adopted, where two
detectors are used when performing the SS. The data gathered
under Hy, i.e. PU is absent, is used to train the one-class
model. iForest inspired technique was proposed to learn the
Hy-class and to to detect the presence of the unusual H;
observations. The obtained results of the HSS demonstrate
that the proposed one-class scheme presents an efficient SS
performance and enhances the SS compared to the non HSS.
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