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Abstract—In this work, we study under which circumstances
it is appropriate to use simplified models for range determi-
nation using radar. Typically, pulsed radar systems result in
the backscattered, demodulated, and matched signal having a
chirp signal structure, with the frequency rate being related to
the range to the reflecting target and the relative velocity of
the transmitter and reflector. Far from the target, and at low
relative velocities, one may achieve preferable location estimates
by neglecting the frequency rate, treating the received signal
as being purely sinusoidal, whereas at close range, neglecting
the frequency rate notably reduces the achievable performance.
Using misspecified estimation theory, we derive a lower bound
of the achievable performance when neglecting the true signal
structure, and show at which ranges one model is preferable
to the other. Numerical results from a mm-wave radar system
illustrate the results.

Index Terms—Range estimation, Radar systems, Misspecified
Cramér-Rao lower bound

I. INTRODUCTION

Radar research and technology has a long and illustrious
history, and has for decades been used on an everyday ba-
sis in a wide range of applications, ranging from classical
problem such as air surveillance to more recent topics such
as fall prevention and close-range surface identification [1]–
[8]. Radar systems have several attractive properties relevant
for these application areas, such as a high tolerance for
environmental influences like weather and lighting conditions,
as well as allowing for accurate and fast identification of
reflecting targets [8]. The technology initially gained notable
interest in the 1930s prior to the Second World War, with
significant progress then made during the war, which played
a key part in deciding the victor [1].

Although the area has attracted substantial interest since,
it is still a highly active area of research. One recent trend
has been the development of small and energy efficient mm-
wave radars such as Acconeer’s A1 radar sensor [7], [8]
and Google’s Project Soli [9]. Such small-scale pulsed radars
can be employed in a variety of close range applications,
such as gesture control [10], surface identification [8], and
object detection [11]. Generally, this form of pulsed systems
transmit a rapid succession of sinusoidal pulses, whereafter
the received backscatters are demodulated and matched with
the transmitted signal in order to determine the distance to
the reflecting object [3], [4]. In cases when the radar and
the reflector move relative to one another, the resulting signal
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may generally be well modeled as a linear chirp signal, with
the frequency rate being related to the relative motion and
distance to the reflecting object [12], [13]. At large distances,
relative to the pulse frequency, the resulting chirp rate is
typically close to negligible, but as the object gets closer
to the transmitter, the frequency rate becomes significant,
and will yield reduced performance if ignored. In order to
efficiently process the received signal, one should therefore
use a parametric model incorporating the chirp rate in cases
when one is close to the reflector, whereas it may be beneficial
both from a computational and performance perspective to
neglect this signal structure when the reflector is further from
the transmitter.

In this work, we examine a theoretical framework for
determining under which circumstances, and in particular at
what transmitter-reflector range, it is beneficial to take the
chirp rate into account when estimating the target location,
and when one actually achieves better performance by ne-
glecting this structure. By comparing a lower bound on the
achievable estimation performance when taking the chirp rate
into account, as given by the Cramér-Rao lower bound (CRLB)
(see, e.g., [14]), with that of the misspecified CRLB (MCRLB)
[15]–[18] resulting from neglecting the actual chirp structure
and instead, assuming that the signal is only constructed from
a sinusoidal reflection, we determine the range at which one
of the model is preferable to the other. The work is related
to recent efforts examining how a system’s performance is
affected by incorrectly assuming an signal structure that differs
from the actual signal’s [19], [20]. Using the resulting MCRLB
for the considered radar problem, we determine at which
distance the simplistic model actually allows for a preferable
performance as compared to the signal’s actual structure.
Numerical results illustrate the results from a close-range mm-
wave radar system, although it should be stressed that the
results are general and are applicable to other settings as well.

II. SIGNAL MODEL

In this work, we consider the pulsed radar system shown in
Figure 1, consisting of a transmitter-sensor system moving in
relation to the reflecting object. For notational simplicity, we
will assume that the target is stationary whereas the sensor is
moving with a constant known speed v0, although it should
be noted that the presented results directly generalize to the
case when also the target is moving and/or the relative velocity
varies over time. While moving, the pulsed radar transmits a
time-limited sinusoidal pulse which reflects on the target, and
when received by the sensor is matched with the transmitted
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pulse [3]. As the sensor moves, the resulting slow-time signal
will yield a signal xt, with wavelength

λ̃t =
λ

2 cosψt
,

where λ and ψt denote the carrier wavelength (in meters) and
the angle to the target, at time t, respectively. Thus, as the sen-
sor approaches the target, the angle ψt will increase, thereby
causing the wavelength λ̃t to also increase, as illustrated in
Figure 1. The resulting signal may be well modeled as [3]

xt = αei
∫ t
0
ϕτdτ+iφ, (1)

for t = 0, 1, . . . , N − 1, with N ∈ N, where α > 0, ϕt,
and φ ∈ [−π, π) denote the amplitude, the instantaneous
angular frequency, and initial phase, respectively. Specifically,
assuming a linear chirp,

ϕt = ω + rt, (2)

with ω ∈ [−π, π) and r ∈ R denoting the initial frequency
and chirp rate, respectively. In the discussed radar localization
problem, the angular direction, ψt, of the target is related to
the parameters of the chirp signal according to

ψt = g(ϕt) = g(ω + rt),

where

g(ω) = 180π−1 arccos

(
ω
fsλ

4πv0

)
with fs and v0 denoting the sampling frequency (in Hz) and
the speed of the sensor (in m/s), respectively. Furthermore, the
chirp rate r in (2) is related to ψt as well as the distance d to
the target by

r = −4πv20 sin2 ψt
λdf2s

. (3)

Under the assumption that v0 > 0, the chirp rate is thus non-
zero if and only if ψt /∈ {0, π} and d is finite. Herein, we are
interested in determining the angular location of the target at
the end of the measurement period, i.e.,

ψN−1 = g(ϕN−1),

given a set of noisy measurements of xt. Specifically, we seek
to compute estimates

ψ̂N−1 = g(ϕ̂N−1),

where ϕ̂ is parametrized by finite-sample estimates of ω̂ and
r̂ based on the measurements

yt = xt + et,

for t = 0, 1, . . . , N − 1. In this work, we assume that et may
be well modeled as a circularly symmetric white Gaussian
noise with variance σ2. Typically, in many practical estimation
scenarios, |r| � 1, implying that

ϕN−1 = ω + r(N − 1) ≈ ω.

Fig. 1. The considered pulsed radar system.

This implies that a relevant question is whether a simplified
sinusoidal waveform can be used in lieu of (1), possibly
allowing for higher-accuracy estimates of ψN−1. That is, if
one assumes the signal waveform

µt = α0e
iω0t+iφ0 , (4)

in place of (1), and computes an estimate of ψN−1 as g(ω̂0)
based on the sample vector y defined as

y =
[
y0 y1 . . . yN−1

]T
what is the obtainable mean squared error (MSE) of g(ω̂0)
as compared to g(ϕ̂N−1)? In particular, as (4) contains fewer
non-linear parameters than (1), it may even allow for more
preferable estimates than taking the true signal model into ac-
count. In order to analyze this, one requires a useful definition
of ω0 when measurements are generated from the chirp model
in (1), as well as finding a relevant bound on the variance of
estimators of ω0. Herein, we propose to address this using the
framework of misspecified estimation.

III. MISSPECIFIED ESTIMATION

As to analyze the behavior of sinusoidal approximations of
noisy measurements of the chirp signal in (1), one requires a
definition of the frequency of (1), despite such a concept not
existing in a strict physical sense. To this end, we propose to
define the frequency ω0 of (1) as the pseudo-true parameter
[17] of the sinusoidal model in (4). Specifically, letting px
denote the probability density function (pdf) of the signal
measurement y, where the subscript indicates the dependence
on the chirp waveform, and letting pµ denote the pdf of the
sinusoidal approximation, the pseudo-true parameter

θ0 =
[
α0 φ0 ω0

]T
is defined as

θ0 = arg min
θ

− Epx (log pµ(y;θ)) , (5)

where Epx (·) denotes the expectation with respect to px.
That is, the pseudo-true parameter θ0 minimizes the Kullback-
Leibler divergence between the actual and assumed distribu-
tions of the signal. For the special case in which both px and
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pµ correspond to models with white Gaussian measurement
noise, θ0 can be computed as the parameter corresponding to
the best `2 approximation of the actual signal waveform, i.e.,

θ0 = arg min
θ

1

N

N−1∑
t=0

|xt − µt(θ)|2 .

For the case considered herein, this implies that the pseudo-
true frequency ω0 can be found as

ω0 = arg max
ω

Φx(ω), (6)

where Φx is the periodogram of the chirp waveform xt, i.e.,

Φx(ω) =
1

N

∣∣∣∣∣
N∑
t=1

xte
−iωt

∣∣∣∣∣
2

.

When both the chirp rate, r, and sample length, N , are small,
the global maximum of Φx is unique, and the pseudo-true
frequency, as given by (6), is given in closed form as

ω0 = ω +
N − 1

2
r = ϕN−1 −

N − 1

2
r.

Using (5) as the definition of the parameters of a sinusoidal
approximation of (1) has a useful practical implication: under
the assumption of uniqueness of θ0, which holds for small
enough (r,N), the misspecified maximum likelihood estimator
(MMLE), i.e., the MLE derived under pµ but applied to
measurements from px, converges almost surely to θ0 as the
signal to noise ratio (SNR) tends to infinity [17]. As the
periodogram estimate is the MLE for the sinusoidal signal,
this implies that

arg max
ω

Φy(ω)
a.s.→ ω0,

as the noise variance σ2 → 0, where Φy denotes the peri-
odogram of the noisy measurements yt. Furthermore, a bound
on the finite-sample variance of this estimate may be found as
the MCRLB [16], [17]. Specifically, it can be shown that for
any estimator θ̂0 of θ0 that is unbiased under px, (see, e.g.,
[16], [19])

Epx
(

(θ̂ − θ0)(θ̂ − θ0)T
)
� A(θ0)−1F (θ0)A(θ0)−1 (7)

where

A(θ0) = Epx
[
∇2

θpµ(y;θ)
]∣∣∣

θ=θ0

(8)

F (θ0) = Epx
[
∇θpµ(y;θ)∇θpµ(y;θ)T

]∣∣∣
θ=θ0

. (9)

It may be noted that for the special case when px = pµ,
for some θ0, F (θ0) = −A(θ0) is the Fisher information
matrix, and the right hand side of (7) is the CRLB of θ. For
the sinusoidal approximation considered here, a closed-form
expression for the MCRLB of ω0 may be found according to
the following proposition.

Proposition 1. The MCRLB for the pseudo-true frequency ω0

corresponding to (4) when the observed signal is generated
from (1) is given by

M(ω0) =
σ2

α2
Nβ

a22 − (N − 1)a1a2 + a21(N − 1)(2N − 1)/6

2(a1a3 − a22)2

(10)

where

β =

∣∣∣∣∣
N−1∑
t=0

e−i
r
2 ((N−1)t−t2)

∣∣∣∣∣
2

a1 =

N−1∑
t=0

ηt , a2 =

N−1∑
t=0

tηt , a3 =

N−1∑
t=0

t2ηt,

with

ηt =

N−1∑
τ=0

cos
(r

2

(
(N − 1)(t− τ)− (t2 − τ2)

))
,

for t = 0, 1, . . . , N − 1. The proof of the proposition is
summarized in the appendix. �

It is worth noting that in the case when r = 0, ηt ≡ N , and
M(ω0) will be identical to the CRLB of a sinusoidal model.
Furthermore, we note that M(ω0) provides a lower bound on
the variance for estimates of ω0. We are herein interested in
the expected performance of the localization estimates, i.e.,
in the MSEs for estimates of ϕN−1 and ψN−1 = g(ϕN−1).
WithM(ω0) denoting the MCRLB, the MSEs may be readily
computed as

MSEϕN−1
, Epx

(
(ϕN−1 − ω̂0)2

)
=M(ω0) + (ϕN−1 − ω0)2

=M(ω0) +

(
r(N − 1)

2

)2

and

MSEψN−1
, Epx

(
(ψN−1 − g(ω̂0))2

)
=

(
∂g(ω)

∂ω

∣∣∣
ω=ω0

)2

M(ω0) + (ψN−1 − g(ω0))2.

Thus, letting C(ϕN−1) denote the CRLB of ϕN−1, the sinu-
soidal approximation yields better location estimates than the
chirp model if

MSEψN−1
≤
(
∂g(ω)

∂ω

∣∣∣
ω=ϕN−1

)2

C(ϕN−1).

As we will illustrate in the numerical results, this inequality
holds for a range of chirp rates. Also, in general,(

∂g(ω)

∂ω

∣∣∣
ω=ω0

)2

M(ω0)�
(
∂g(ω)

∂ω

∣∣∣
ω=ϕN−1

)2

C(ϕN−1),

i.e., the main limitation of using the sinusoidal approximation
is the resulting squared bias.

2271



10
-1

10
0

distance [m]

10
-5

10
-4

10
-3

10
-2

M
S

E
CRLB far-field

CRLB near-field

MCRLB

MCRLB + bias2

MMLE g(
0
)

MMLE 
N-1

MLE 
N-1

Fig. 2. Empirical estimator MSEs obtained from 10 000 Monte Carlo
simulations, together with theoretical bounds and MSE, for fixed SNR 10
dB.

IV. NUMERICAL RESULTS

We proceed to illustrate the implications of the proposed
model reduction in a simulation study using the localization
setup in Figure 1. Specifically, we let the target angle be
ψN−1 = π/4, and study the MSE for the location estimate
obtained from using the two alternative models, i.e., (1) and
(4). The distance d to the target, is varied on the interval
[0.05, 6.4] m, i.e., the scenarios consider range from near-
field to far-field, implying that the chirp rate decreases in
absolute value as d increases. For each considered distance
d, we perform 10 000 Monte Carlo simulations, in which the
target angle is estimated based on the models in (1) and (4),
where the signal parameter estimates are obtained using the
MLE and MMLE, respectively. The parameters defining the
setup in Figure 1 are the wavelength λ = 5 mm, the sampling
frequency fs = 5700 Hz, and the sensor movement speed is
v0 = 0.2 m/s.

Figure 2 shows the resulting CRLB for near- and far-field
models, as compared with the MCRLB and the theoretical
MSE for the misspecified model, here denoted MCRLB+bias2,
together with the MSE for both the correctly specified model,
denoted MLE ψN−1, and the misspecified model, denoted
MMLE ψN−1, as well as the variance of the misspecified
estimator, denoted MMLE g(ω0). In the case shown, we have,
in order to illustrate how the distance to the target affects
the achievable performance, fixed SNR = 10, with the SNR
defined as SNR = α2/σ2.

As may be seen in the figure, as the distance increases, the
expected bias is reduced and the MCRLB approaches the far-
field CRLB, indicating that using an estimator that assumes
the sinusoidal model in (4) will yield preferable estimates than
an estimator exploiting the signal’s actual chirp model. It is
worth noting that the difference between MCRLB and the
far-field CRLB is very small even at relatively close range,
meaning that the variance of using the sinusoid estimator will
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Fig. 3. Empirical estimator MSEs obtained from 10 000 Monte Carlo
simulations, together with theoretical bounds and MSE, with SNR ∝ 1/d4.

not become significantly worse even when the target is very
close and the chirp rate is high. Instead, the dominant aspect
reducing the performance of a sinusoidal estimator for high
chirp rates will be the resulting bias, as is evident from the
difference between MCRLB and MCRLB+bias2. This bias is
due to the sinusoid estimator finding the average frequency
of a chirp, whereas the quantity of interest is actually the
final frequency of the chirp. The most interesting point to
note in Figure 2 is the intercept of the near-field CRLB and
MCRLB+bias2. For distances smaller than this point, the chirp
model will yield a better estimate of the angle, whereas for
distances larger than this point, the sinusoid model will yield
a better estimate of the angle, assuming the SNR is constant
at 10. In these simulations, the value for d was used in (3) to
calculate the corresponding chirp rate r.

Figure 3 illustrates a more realistic situation, where the
SNR varies with the distance between the transmitter and the
target, d, such that the signal strength decreases proportionally
to 1/d4. The main difference between the two simulations is
thus that all the errors, as well as the bounds, increase as the
distance grows as a result of the weakening signal strength.
As can be seen in the figure, the MSE differs notably at larger
distances, in spite of the large number of simulations; this
effect is most likely due to the weak SNR, which also implies
that the (asymptotic) bounds are no longer tight. The figure
also shows that the chirp model will be preferable when the
transmitter and target are closer than 0.44 m, and that the
sinusoid model will be preferable when they are further apart.

Figure 4 displays the ratio of the theoretical MSE and CRLB
corresponding to the models in (4) and (1), respectively, when
varying the distance to the target as well as the power of
the transmitted pulses. The signal strength is here expressed
in terms of the SNR corresponding to a target distance of
1 m. As seen in the figure, the simplified model in (4) offers
preferable performance for moderate to large distances, as well
as in moderate to low SNR settings, despite being biased.
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dashed line marks the transition between the models, i.e., the model in (4)
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V. CONCLUSIONS

In this work, we have studied the implications of using
simplified model structures for the close-range radar local-
ization problem with a moving sensor system. Exploiting
misspecified estimation theory, we derive an expression for
the expected mean squared error of the angle to the target,
being directly related to the distance to the target. This allows
for determining which model should be employed for optimal
estimation accuracy, depending on the measurement scenario,
and, in particular, on the distance to the target.

APPENDIX

Expanding (8) and (9) under the assumption that px is a
circularly symmetric white Gaussian distribution, it holds that

A(θ0) = Epx
[
∇2

θ ln pµ(y;θ)
]∣∣∣

θ=θ0

= Epx

[
∇2

θ

(
− 1

σ2

∑
t

|yt − µt|2
)]∣∣∣

θ=θ0

= Epx

[∑
t

− 2

σ2
<
{
∂µt
∂θ

∂µ∗t
∂θ

+ (µt − yt)∗∇2
θµt

}]

= − 2

σ̃2

N 0 0
0

∑
t<{µ∗txt}

∑
t<{tµ∗txt}

0
∑
t<{tµ∗txt}

∑
t<
{
t2µ∗txt

}


and

F (θ0) = Epx
[
∇θ ln pµ(y;θ)∇θ ln pµ(y;θ)T

]∣∣∣
θ=θ0

=
2σ2

σ̃4

∑
t

<{∇θµt∇θµ
∗
t }

=
2σ2

σ̃4

N 0 0

0 Nr20
N(N−1)

2 r20
0 N(N−1)

2 r20
N(N−1)(2N−1)

6 r20

 ,

where

σ̃2 = σ2 +
1

N

N−1∑
t=0

|xt − µt|2

is the pseudo-true misspecified noise variance. The MCRLB
of ω0 is given by the (3,3) element of A(θ0)−1F (θ0)A(θ0)−1,
yielding the result in (10).
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