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Abstract—Adaptive Fourier decomposition (AFD) provides an
expansion of an analytic function into a sum of basic signals,
called mono-components. Unlike the Fourier series decomposi-
tion, the AFD is based on an adaptive rational orthogonal system,
hence it is better suited for analyzing non-stationary data. The
most popular algorithm for the AFD decomposes any signal in
such a way that the energy of the low-frequency components is
maximized. Unfortunately, this results in poor energy compaction
of high-frequency components. In this paper, we develop a novel
algorithm for the AFD. The key idea is to maximize the energy of
any components no matter how big or small the corresponding
frequencies are. A comparative evaluation was conducted of the
signal reconstruction efficiency of the proposed approach and
several conventional algorithms by using speech recordings. The
experimental results show that with the new algorithm, it is
possible to get a better performance in terms of the reconstruction
quality and energy compaction property.

Index Terms—Fourier series, Takenaka-Malmquist system,
mono-components, adaptive decomposition, energy compaction

I. INTRODUCTION

Spectrum analysis is the core of many signal processing
applications. In engineering, it is the process of decomposing
a signal into simpler components. Fourier-based methods are
probably the most popular tool used for this purpose. Unfortu-
nately, conventional methods such as Fourier series expansion
may be inefficient in the analysis of non-stationary data.
Recently, the adaptive Fourier decomposition (AFD) has been
proposed [1]. The AFD has a firm mathematical foundation in
complex analysis and analytic function theories. It provides
an expansion of an analytic function into a sum of basic
components with a non-negative analytic phase derivative.
Measurable functions with this property are called mono-
components. The AFD is based on the rational orthogonal
system in which parameters are selected adaptively for a given
signal. Fourier series decomposition (FD) can be considered
as a special case of the AFD when these parameters are
all chosen to be zeros. In opposition to the Fourier series,
mono-components decomposed by the AFD are with time-
varying instantaneous frequencies. Hence it is better suited
for analyzing non-stationary data.

In recent years, the AFD has found several applications
including system identification, signal compression, and noise
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reduction [2]–[4]. However, two major issues limit wider use
of the AFD: its high computational complexity and poor
energy compaction of high-frequency components. Possible
solutions for the first problem include using the FFT algo-
rithm [5], numerical optimization methods [6] and GPU-based
implementation [7]. In this paper, we deal with the second
problem.

The most popular approach, known as core AFD algorithm
[1], [8], forces to extract, at the consecutive steps, the maximal
energy in low-frequency components, which is not natural.
Such a strategy works well only when the spectral content of a
decomposed signal is dominated by low frequencies. However,
in practice, there are many signals containing components that
fall off at high frequencies. Applying the core AFD to such
signals results in a significant reconstruction error or a large
number of non-zero decomposition coefficients.

In the literature [8], we can also find several modifications
of the core AFD including unwinding AFD and cyclic AFD.
It was reported in [8] that the unwinding AFD achieves a
faster energy convergence rate for the high-frequency signals.
Although the algorithm proved to be suitable for compression
of the electrocardiogram signals [4], it is complicated and
computationally expensive. Furthermore, the unwinding AFD
has not a simple form as it involves, at each decomposition
level, factorization of the remainder into inner and outer
functions. The cyclic AFD [8], [9] directly minimizes the
reconstruction error for a given number of decomposition
levels. Unfortunately, attaining the minimum does not always
mean that we also get optimal energy compaction of the AFD
coefficients. Indeed, the cost function can have multiple local
minima that correspond to various energy distributions across
the AFD spectrum.

In this paper, we propose a novel algorithm for the AFD
that extracts the components of large energy portions no matter
how big or small the corresponding frequencies are. The
new optimization strategy can be viewed as an extension of
the core AFD. The proposed method is evaluated using real
speech recordings. It achieves better energy compaction than
the conventional approaches and turns out to be well suited to
speech processing applications. Unfortunately, it is also more
computationally demanding compared to the core AFD.
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II. ADAPTIVE FOURIER DECOMPOSITION

Suppose a real-valued function s(eit) defined in t ∈ 〈0; 2π).
By using the Gabor method [10] one can associate it with a
complex-valued function of the form:

f(eit) = s(eit) + iHs(eit), (1)

where H stands for the Hilbert transformation of the context.
This function has only positive frequencies in the Fourier
spectrum and it is referred to as an analytic signal. For a given
f(eit), the AFD is expressed as follows [1], [8]:

f(eit) =

∞∑
k=1

ckBk(eit), (2)

where ck is kth decomposition coefficient defined using the
inner product:

ck = 〈f,Bk〉 =
1

2π

∫ 2π

0

f(eit)B̄k(eit)dt, (3)

with B̄k denoting the complex conjugate of Bk. The function:

Bk = B{a1,...,ak}(e
it) =

√
1− |ak|2

1− ākeit
k−1∏
j=1

eit − aj
1− ājeit

, (4)

is generated by a sequence (a1, ..., ak) of complex numbers
of the open unit disc, i.e., aj ∈ D, where 1 ≤ j ≤ k and
D := {z ∈ C : |z| < 1}. The set of functions {Bk}∞k=1 forms
orthonormal system with respect to the inner product (3). It
is also known as the Takenaka-Malmquist (TM) system, and
it is complete in the Hardy space if and only if the following
condition is satisfied:

∞∑
k=1

(1− |ak|) =∞. (5)

In practice, a discrete model of (3) is used and it is assumed
that the signal f(eit) is sampled uniformly at points t ∈ {tn =
2π(n − 1)/N, n = 1, . . . N}. Furthermore, the expansion (2)
is truncated to a finite number of terms, so that f(eit) can be
approximated by the Kth partial sum:

fK(eitn) =

K∑
k=1

ckBk(eitn), n = 1, . . . , N, (6)

with the squared reconstruction error given by

‖f − fK‖2 = ‖f‖2 −
K∑
k=1

|ck|2. (7)

where ‖.‖ denotes Euclidean norm. Please note that, if all
parameters of the sequence (a1, ..., aK) are fixed to zero,
the AFD reduces to the Fourier series decomposition. If one
chooses a1 = 0 and |ak| < 1 for k = 2, ...,K, then the
functions {Bk}Kk=1 are all mono-components. Most frequently,
these parameters are adaptively chosen by following a given
optimization strategy. In the case of the core AFD algorithm,
they are selected consecutively, one-by-one by applying the so-
called maximal selection principle (MSP). Namely, in order to

identify the parameter ak, the following optimization problem
is solved [1]:

ak = arg max
a∈D
{|〈f,B{a1,...,ak−1,a}〉|

2}, (8)

for a1, ..., ak−1 being previously determined. This procedure
is repeated until either the decomposition level K is reached
or (7) drops below some reasonably small threshold.

III. THE AFD ALGORITHM BASED ON ENERGY
COMPACTION

An energy convergence of the AFD has been theoretically
proved in [1]. In practice, for sufficiently large K we can
get near-zero reconstruction error for any signal and sequence
(a1, ..., aK) as long as aj ∈ D for all j = 1, ...,K. However,
the resulting AFD spectrum may contain a large number of
non-zero coefficients that are difficult to encode. On the other
hand, the packing energy of the signal into the low-frequency
components as in the core AFD may be ineffective. Therefore,
instead to minimize K, we propose to reduce the number
of non-zero coefficients by maximizing the energy of any
AFD component no matter how big or small corresponding
frequencies are.

We assume that the decomposition parameters can be opti-
mized consecutively, one-by-one. Similarly, as in the cyclic
AFD [8], we also assume that K is given a priori, and
that the parameters in the sequence (a1, ..., aK) are already
initialized to some arbitrarily chosen values. It is easy to see
that the function Bj depends on aj and some j−1 previously
determined parameters. Thus the parameter ak, for k < j, may
have an effect not only on the coefficient ck, but also on the
coefficients ck+1, ..., cj . The key idea of the proposed method
is to use an optimization strategy that takes into account the
energies of all these coefficients. In particular, the jth AFD
coefficient, provided that the kth parameter ak = a, can be
written as follows:

ckj (a) = 〈f,B{a1,...,ak−1,a,ak+1,...,aj}〉, (9)

where j = k, ...,K. Let us define the function of a ∈ D that
evaluates the squared magnitude of the AFD coefficient of the
largest energy:

λkmax (a) = max{|ckk(a)|2, |ckk+1(a)|2, ..., |ckK(a)|2}. (10)

We propose the following optimization strategy for determin-
ing the kth decomposition parameter:

ak = arg max
a∈D

λkmax (a). (11)

Please note that, contrary to (8), while searching for op-
timal ak, we have to evaluate not only ckk(ak = a) =
〈f,B{a1,...,ak−1,a}〉, but also high-frequency coefficients as-
suming that the sequence (ak+1, ..., aK) is approximately
known. In fact, if we ignore in (10) the terms ckj (a) for all
j > k, then the algorithm becomes equivalent to the core AFD.
Thus, the proposed optimization strategy can be viewed as an
extension of the MSP.
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The cost function (10) is non-linear and complicated; hence
calculating its gradient as well as finding an analytic solution
to (11) is rather a challenge. In this paper, we propose the
exhaustive search method similar to that of the core AFD [1].
It is based on a predefined subset:

DL×M := {âj ⊂ D : j = 1, 2, ..., LM}, (12)

which can be viewed as a grid mesh of size L×M nodes. In
particular, the elements of DL×M can be uniformly distributed
on D and expressed in polar coordinates:

â(l−1)M+m = rmax
l − 1

L
ei2π

m−1
M , (13)

for 1 ≤ l ≤ L and 1 ≤ m ≤M , where L,M correspond to the
radial and angular discretization of the unit disc, respectively.
The value of parameter rmax is empirically set in the range
(0; 1〉 in order to prevent from dividing by near-zero values in
the denominator of (4). In practice, it may be a good idea to
gradually increase this value as long as no further improvement
is observed in a signal reconstruction quality. Alternatively, the
coordinates of âj can be randomly generated from a uniform
distribution as suggested in [6].

The most computationally demanding part of the proposed
method is an evaluation of the AFD coefficients (9). Since
the subset DL×M is of size LM , at the kth decomposition
level, we have to compute LM ×K − k+ 1 coefficients. For
convenience, they can be stored in the following matrix:

ckk(â1) ckk+1(â1) · · · ckK(â1)
ckk(â2) ckk+1(â2) · · · ckK(â2)

...
...

. . .
...

ckk(âLM ) ckk+1(âLM ) · · · ckK(âLM )

 . (14)

Thus, the solution to (11) can be found as ak = âj , where
j is a row number of the matrix (14) that contains the AFD
coefficient of the largest energy. Theoretically, the elements
of (14) can be computed from (3) by means of numerical
integration. However, a direct evaluation of the function (4)
can be numerically unstable and erroneous. Instead, a so-called
reduced remainder is used:

g1(eit) = f(eit), (15)
gk(eit) =

[
gk−1(eit)− ck−1eak−1

(eit)
]
/bak−1

(eit), (16)

for k > 1, where

ea(z) =

√
1− |a|2
1− āz

, ba(z) =
z − a
1− āz

, (17)

denotes the evaluator and Blaschke functions, respectively. It
can be verified that 〈gk, eak〉 = 〈f,Bk〉 = ck because of the
orthogonalization of {Bk}Kk=1 [8]. Therefore, the elements in
the first column of the matrix (14) can be approximated by

ckk(a) ≈ 1

N

N∑
n=1

gk(eitn)ēa(eitn). (18)

Please note that since the functions (17) do not depend
on the signal f(eit), they can be pre-computed for each

element of the subset (12) at the points t1, ..., tN and reused
at each decomposition level, so that the computational load
can be reduced significantly. Furthermore, we can decrease
the number of multiplications by initializing the parameters
ak+1, ..., aK to zeros. Then, the remaining AFD coefficients
can be computed at a reduced cost as follows:

ckj (a) ≈ 1

N

N∑
n=1

gkj (eitn), j > k, (19)

where

gkk+1(eit) =
[
gk(eit)− ckk(a)ea(eit)

]
/ba(eit), (20)

gkj (eit) =
[
gkj−1(eit)− ckj−1(a)

]
e−it, j > k + 1. (21)

It can be verified that, for K decomposition levels, the time
complexity of the proposed algorithm (in terms of complex
multiplications) is of order O(LMNK2), while the complex-
ity of the core AFD is of order O(LMNK).

Figure 1a demonstrates the reconstruction of the chirp signal
using core AFD, cyclic AFD, conventional Fourier series, and
the proposed method. In Fig. 1b we also show the squared
magnitudes (energies) of the decomposition coefficients ob-
tained for each algorithm. The proposed method offers the best
energy compaction, as the corresponding spectrum contains
the smallest number of the ‘non-zero’ coefficients of the
largest energy. Almost total energy was packed into a single
component, while in the case of the other algorithms this
energy leaks into the multiple components.

IV. EXPERIMENTS

The simulations were performed in MATLAB environment
using real-life signals. For comparative purposes, we also
implemented core AFD, cyclic AFD, and conventional Fourier
series decomposition (FD) as a baseline method. In the case
of the AFD algorithms the size of the grid mesh (12) was
32×32 nodes and rmax = 0.9. As an input data, a phonetically
balanced set of 8 short sentences uttered by both male and
female speakers was selected from the TIMIT database [11].
The sentences were originally recorded at a sampling rate of
16 kHz. For convenience, they were downsampled to 8 kHz,
and merged together to form one sequence about 30 s long.
This sequence was partitioned into frames of length N = 128
samples (16 ms) with no overlap, which gives as in total
1814 data frames. Since a real-valued signal was used, the
frames were Hilbert transformed to obtain their analytic signal
representations. For each frame, we computed decomposition
coefficients and the original sequence was reconstructed in
a twofold manner. In the first approach, we selected only
P < K coefficients of the largest energy, spread over the
entire spectrum. This is equivalent to setting in (6) K − P
coefficients of the smallest magnitudes to zeros. The second
approach was to reconstruct the frames by selecting the first
P components no matter how big or small the corresponding
magnitudes are. In both cases, the simulations were performed
for P ranging from 1 to 32, and K = 64. The effectiveness
of the reconstruction was measured using relative energy
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Fig. 1: Reconstruction of the chirp signal using various methods for N = 256 and K = 20. (a) Real parts of the original signal
(blue line) and the partial sum (6) (red dots). The reconstruction errors are given in the titles. (b) Energies of the corresponding
decomposition coefficients.

error defined as EK = ‖f − fK‖2/‖f‖2. This quantity
was computed for each speech frame and then averaged
over the whole sequence. As can be seen in Fig. 2a, if we
select coefficients with the largest magnitudes, the proposed
algorithm gives the lowest reconstruction error for the same
number of the coefficients among all methods. Whereas, if
only the first P components are used for reconstruction (see
Fig. 2b), the core AFD algorithm has the best performance,
but the resulting reconstruction error is higher than that of the
previous approach for all methods including core AFD itself.
The effectiveness of the proposed method was also verified
using spectrograms in Fig. 3. We see that compared to other
AFD algorithms, the high frequencies are better represented
in the reconstructed signal.

In some applications like speech coding, we need to encode
not only the AFD coefficients but also the parameters of
the TM system as a side data [12]. If the reconstruction is
based on the first P coefficients, then P additional parameters
must be encoded. However, when the coefficients are spread
over the entire spectrum this requirement may increase up
to K parameters. Fortunately, since we use the predefined
set (12), they can be encoded more efficiently as the integer
numbers (indices). Furthermore, as can be deduced from Fig.
2 (bottom charts), for the proposed method many of these
parameters are simply zeros. Indeed, since the cost function
(10) depends on the signal, there is no guarantee that the
maximum always exists. Thus, if we initialize these parameters
to zeros, many of them may stay unchanged. This observation

can be used in the practical coding algorithm so that only non-
zero parameters should be encoded. Despite the clear benefits
offered by the proposed algorithm, the question arises whether
this improvement is sufficient to build an efficient compression
method? In fact, the development of such a method is not
an easy task, so this question remains open and will be
investigated in future work. On the other hand, there are many
applications like noise reduction, harmonic analysis, where the
primary requirement is good energy compaction, and the issues
related to encoding side data are less important.

V. CONCLUSION

We developed a new algorithm aimed at improving the
energy compaction of the AFD. As in the conventional op-
timization strategy, the decomposition parameters are selected
consecutively one-by-one, but when maximizing inner product
energy also higher frequency AFD coefficients are taken into
account. Although the proposed method tends to be compu-
tationally demanding, it is more suitable for the processing
of real-life data. The evaluation results clearly show that
with the new method the speech signals can be encoded
more efficiently by using a smaller number of coefficients.
It was also shown that reconstructing the speech signals using
the largest decomposition coefficients usually gives a smaller
reconstruction error than with a typical AFD framework.

Future works include reducing the computational com-
plexity of the proposed algorithm and developing practical
applications like signal compression and denoising.
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Fig. 2: Relative reconstruction error (top) and the number of non-zero decomposition parameters - side data - (bottom) averaged
over all frames. (a) The scenario where the frames were reconstructed using P components of the largest energy. (b) The
scenario where the frames were reconstructed using the first P components.
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Fig. 3: Spectrograms of the original speech fragment (top) and
the signals reconstructed by various AFD algorithms using
P = 16 coefficients of the largest energy.
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