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Abstract—An anomalous sound detection system to detect
unknown anomalous sounds usually needs to be built using
only normal sound data. Moreover, it is desirable to improve
the system by effectively using a small amount of anomalous
sound data, which will be accumulated through the system’s
operation. As one of the methods to meet these requirements,
we focus on a binary classification model that is developed
by using not only normal data but also outlier data in the
other domains as pseudo-anomalous sound data, which can be
easily updated by using anomalous data. In this paper, we
implement a new loss function based on metric learning to learn
the distance relationship from each class centroid in feature
space for the binary classification model. The proposed multi-
task learning of the binary classification and the metric learning
makes it possible to build the feature space where the within-
class variance is minimized and the between-class variance is
maximized while keeping normal and anomalous classes linearly
separable. We also investigate the effectiveness of additionally
using anomalous sound data for further improving the binary
classification model. Our results showed that multi-task learning
using binary classification and metric learning to consider the
distance from each class centroid in the feature space is effective,
and performance can be significantly improved by using even a
small amount of anomalous data during training.

Index Terms—anomalous sound detection, binary classifica-
tion, class centriods, semi-supervised learning, metric learning,
multi-task learning

I. INTRODUCTION

Anomalous sound detection (ASD) is the task of identifying
whether a sound emitted from a particular object is normal or
anomalous. Here, an anomalous sound is caused by an atypical
event, such as an accident or the malfunction or breakdown
of a machine. The detection of anomalous sounds can also
be used to improve the efficiency of maintenance work on
manufacturing equipment and infrastructure and to monitor
equipment installed in difficult locations for people to enter.
The use of this technology is expected to become widespread
during the coming fourth industrial revolution, e.g., factory
automation utilizing artificial intelligence [1], [2].

It would be difficult to collect data representing every possi-
ble anomalous sound because these sounds rarely occur during
the normal operation of factory equipment, and the possible
types of anomalous sounds are very diverse. Therefore, when
constructing an ASD model, it is often the case that only
normal data is used, or that only a small amount of anomalous
data is used in addition to the normal data. One detection
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method that is used when only normal data is being utilized
is outlier detection, which models normal data and detects
data that does not correspond to the model, categorizing it
as anomalous. Typical methods include generative modeling
approaches which utilize probabilistically modeling of the
distribution of normal data using Gaussian mixture models [3],
and one-class support vector machines [4], [S] using acoustic
features such as Mel frequency cepstrum coefficients. As
a result of advances in deep learning technology, methods
based on neural networks are also gaining attention [6]. These
methods train autoencoders (AE) or autoregressive models
with recursive neural networks to reconstruct normal data,
and calculate the reconstruction error for use as an anomaly
score [7]-[10]. Although these methods can achieve a high
level of performance, they use only normal data during train-
ing, so it is difficult to make effective use of anomalous data.

In contrast, binary classification approaches utilize outlier
sound data in addition to normal sound data such as typical
target machine operating noise [11]-[13]. These methods
assume that anomalous data is distributed outside the normal
data domain, and outlier data is distributed further outside of
normal data. Based on this assumption, a binary classifier is
trained using the normal data as positive examples, and the
outlier data as pseudo-negative examples, so that distance from
the decision boundary can be used as an anomaly score for
the data. Therefore, unlike methods that model normal data, a
small amount of anomalous data, usually obtained during the
ASD system’s routine operation, is directly used for training.
It is expected that these types of binary classification-based
ASD methods will continuously improve due to the long-term
operation of the system as more and more anomalous data is
collected.

In this paper, we propose a new method for detecting
anomalous sounds based on a binary classification model using
outlier data. A new loss function is introduced to the binary
classification model to learn the relative distances between
each sound class’s centroids in the feature space. By using both
multi-task learning of the classification task and metric learn-
ing, we should be able to map the feature space that minimizes
within-class variance and maximizes between-class variance,
while allowing linear separation between classes. We also
investigate the relationship between the amount of anomalous
data used for training and classification performance to clarify
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Fig. 1: Architectures of existing and proposed ASD methods.

how the amount of anomalous data used impacts the detection
of anomalous sounds in binary classification models. We
conducted our experimental evaluation using the same dataset
used in the DCASE 2020 Task 2 anomaly detection task [6].
Our results showed that 1) multi-task learning using binary
classification and metric learning to consider the distance from
each class centroid in the feature space is effective, and 2)
performance can be significantly improved by using even a
small amount of anomalous data during training.

II. RELATED WORK

This section provides a brief overview of previous research
on ASD using binary classification. We also describe a metric
learning approach for improving anomaly detection, originally
proposed for image processing.

A. Anomalous Sound Detection Based on Binary Classifica-
tion

Several methods for detecting anomalous sounds based
on binary classification using outlier data have been pro-
posed [11]-[13]. An overview of this approach is shown in
Fig. 1 (a). These methods assume that even task-irrelevant
outlier data can be substituted as anomalous data if carefully
selected. These methods allow a model to be trained to solve
a classification problem that discriminates between anomalous
and normal sounds, even when anomalous data is not available.
In [12], the important aspects of outlier data selection has been
identified as the matching of recording conditions, similarity
to the target sound, and content diversity.

Consider a set X = {x1,X3,...,xy} that has N samples of
outlier data, and a set X = {X;, Xy, ..., Xps} that has M sam-
ples of normal and anomalous data. Normal and anomalous
data sets are assigned labels §; € {+1,—1} (j =1,2,..., M)
for each data sample. Here, § = +1 indicates that the data is
normal, and § = —1 indicates that the data is anomalous.
The outlier data set is labeled y € {+1,—1}, which is
common to all of the data, based on a prior assumption
as to whether it is closer to the normal or the anomalous
data. When performing ASD using a method based on binary
classification, the network is trained to minimize the following
binary cross-entropy (BCE) loss function:

1 N
log (1 — p;
RESTRPIICLI
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where p and p are the posterior probabilities output by network
¢p, such as p = ¢,(x), which minimizes (1) when x or X is
used as input and wu(y) is a binary function that takes 1 for
y > 0 and O for y < 0. In this paper, the outlier data is
always treated as pseudo-anomalous data by setting y to -1.
This assumption allows learning to be performed even when no
anomalous data actually exists. During inference, the posterior
probability p output by the network is used to calculate and
use the anomaly score s as s =1 — p.

B. Anomaly Detection Based on Metric Learning

Another method of anomaly detection, based on metric
learning using outlier data, is deep semi-supervised anomaly
detection (DSAD) [14]. Fig. 1 (b) shows an overview of this
approach. During classification, data that falls closer to the
centroid is deemed normal, while data falling farther from the
centroid are considered anomalous. The centroid in the feature
space is obtained using the pre-trained model. The DSAD loss
function is expressed as follows, using a set of NV outlier data
X and a set of M normal and anomalous data X:

N M
1 - o
Losap = 337 {Z 2 —c |2 +0> 117 —c |} @)

i=1 j=1

where z and z are the embedding vector output by encoder
network ¢, such as z = ¢,(x), which minimizes (2) when x
or x are used as input. ¢ € R is the centroid in the feature
space of the normal data (§ =+1Uy = +1), and n > 0 is
the hyperparameter that weights the data. For the data deemed
normal, a loss is imposed on the distance between centroid c
and the mapping point, and learning is performed to minimize
the within-class variance of the data. Note that DSAD can be
used even when there is no anomalous data. In this paper, the
outlier data is always treated as pseudo-anomalous data by
setting y to -1.

The training procedure is as follows. First, the encoder
network is trained as an AE using only data considered normal
to obtain the parameters’ initial values. Then, using the trained
encoder, the average vector is calculated for the embedding
vectors of the normal data, which is used as the centroid of
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the normal data. The data deemed anomalous is also used, and
learning is performed by minimizing (2). Note that centroid
c is not updated and does not change from its initial value.
During inference, the distance between embedding vector z
and centroid c is used to calculate the anomaly score.

III. PROPOSED METHOD

An overview of the proposed semi-supervised ASD system
is shown in Fig. 1 (c). We propose a new loss function based on
metric learning, which we call a Deep Double-Centroids Semi-
supervised Anomaly Detection (DDCSAD) loss function. The
proposed loss function, which is based on metric learning, is
used for the embedding vector. The DDCSAD loss function
is an extension of the DSAD loss function, that considers the
centroid of normal data and the centroid of outlier data. The
DDCSAD loss function is calculated by first extending (2) as

follows:
N

1
L — E Z: —C 2y z: —C —2y
DDCSAD N+ M £t {” (2 P ” + H i n H }

L - - 3
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where, ¢, € RP and ¢, € RP represent the centroid of the
normal and outlier data, respectively. In this paper, the outlier
data is always treated as pseudo-anomalous data by setting y
to -1. The following equation expresses the final loss function:

“4)

where A > 0 is a hyperparameter that controls the balance
between the loss functions. It is expected that multi-task learn-
ing using both the cross-entropy of the posterior probability
and the DDCSAD loss function will improve the use of data
and increase accuracy when learning the decision boundaries,
resulting in more accurate ASD.

During training, outlier data is used as pseudo-anomaly data.
If anomalous data is available, it is also used together with
the outlier data. Unlike DSAD, the proposed method does
not perform pre-training to initialize the weight parameters
but instead uses randomly initialized parameters. The initial
values of the two centroids ¢, and c,, are also calculated using
randomly initialized parameters. And then, they are updated
at each epoch by recalculating the centroids using the entire
training data set.

During inference, posterior probability p (which is the out-
put of the full connection layer), and distance d =| z — ¢, ||
between embedding vector z and centroid c, of the normal
class, are used to obtain the anomaly score. First, we compute
distance d across the entire set of evaluation data, and then
calculate the standardized distance d’ (within the range of a
maximum value one and a minimum value zero) across the
entire data. Finally, anomaly score s is calculated using the
following equation:

L = Lce + ALDpDCSAD,

s=ax(1-p)+(1—a)xd, (5)

where, « is a hyperparameter that determines the proportion
of anomaly scores using posterior probability p.

TABLE I: o for BCE+DSAD and BCE+DDCSAD.

Method fan pump slider ToyCar ToyConv. valve
BCE+DSAD 0.1 0.2 0.0 0.0 0.0 0.0
BCE+DDCSAD | 0.1 1.0 1.0 0.1 0.0 1.0

1V. EXPERIMENTAL EVALUATION
A. Experimental conditions

To evaluate the performance of the proposed method, we
conducted an experiment using the DCASE 2020 Task 2 [6]
data, which consists of two datasets, ToyADMOS [15] and
MIMII [16]. From the ToyADMOS dataset, we used audio
data for two types of machines, ToyCar and ToyConveyor,
while MIMII provided audio data for four types of machines,
fan, pump, slider, and valve, for a total of six machine types.
Each set of audio data for each type of machine consists
of seven or eight different machines of that type, and ID
information is provided to indicate exactly which machine
the data belongs to. For each machine (i.e., each ID), about
1,000 samples of normal sound are provided as training data,
about 200 to 400 samples of normal and anomalous sounds
from some of the machines are provided as validation data,
and about 400 samples of normal and anomalous sounds
from machines different from those included in the validation
data are provided as evaluation data. Each sample is about
10 seconds in duration, and includes the target machine’s
operational and environmental sounds, with a sampling rate
of 16 kHz on one recording channel.

We compared the results when using each of the following
five loss functions:

BCE: A function which divides the feature space linearly.
For the loss function, we used (1).

DSAD: The centroid of the normal data is defined to min-
imize within-class variance. For the loss function, we
used (2). However, we did not use the pre-training model
to initialize the AE’s weight parameters, and we randomly
initialized both the weight parameters and the parameters
of the centroid of the normal data ¢ because we found
that the random initialization tended to outperform the
AE-based initialization.

DDCSAD: The centroids of both the normal and outlier
data are defined to minimize within-class variance and
maximize between-class variance. For the loss function,
we used (3).

BCE+DSAD: We defined the centroid of the normal data to
minimize within-class variance while creating a function
that linearly divides the feature space. The loss function is
derived by replacing Lppcsap in (4) with Lpgap in (2).
In this case, as in the case of DSAD, we did not use
pre-training to initialize the AE’s weight parameters, and
we randomly initialized both the weight parameters and
centroid c of the normal data parameters.

BCE+DDCSAD: A function which divides the feature space
linearly, while also defining the centroid for normal
and outlier data to minimize within-class variance and
maximize between-class variance. For the loss function,
we used (4).
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In order to accurately compare differences in performance
related to the use of these various loss functions, we used
the same pre-processing and network structure for all of the
methods being compared, and only varied the loss function and
presence of the full connection layer. As a pre-processing step,
we calculated each machine’s amplitude values, normalized
them to have a mean of O and variance of 1, and then
extracted 128-dimensional logarithmic Mel filter-banks, which
were used as input features for the network using 1,024-sample
windows and a hop-size of 512 samples. The network structure
consisted of a feature extractor with a convolutional layer that
takes a series of acoustic feature as input, an aggregator that
aggregates the acoustic feature and transforms them into fixed-
length embedding vectors, and a full connection layer that
performs binary classification using the embedding vectors. As
our feature extractor, we used the ResNet38 framework [17]
proposed for pretrained audio neural networks (PANNs) [18].
Global average pooling, which averages in frequency and
time information, was used as the aggregator. We performed
learning for each particular machine ID. The normal data of
the target ID of the target machine type was used as the normal
data, and the normal data of other IDs of the target machine
type, and the normal data of all the IDs of the other machines
in the same data set, were used as outlier data [12]. The
outlier data was used as pseudo-anomalous data in all of the
methods compared. We used different learning rates for each
layer, 0.0001 for the convolutional layer and 0.001 for the
full connection layer. We used Adam [19] as the optimization
method and multiplied the learning rate by 0.5 after every
1,000 iterations. We set the total number of iterations to 4,000.
We set the value of A to 1.0 and the value of 7 to 2.0. During
inference, we divided the number of frames in each sample’s
acoustic feature series into ten sections, with overlap allowed
so that the frame length was equal to 256. We calculated
anomaly scores for each segment of each series, and these
scores were then averaged and used as the final anomaly score.
The values of « for inference were decided using the validation
data, and are shown in Table 1.

We used the area under the receiver operating characteristic
(ROC) curve (AUC) as an evaluation metric, which is calcu-
lated as follows:

1 N_ N4
AUC = N+ZZH<A9 (xj)—Ae (x_)) (6)
- i=1i=j

where H(a) represents a binary function that returns 1 when
a > 0 and 0 when a < 0, and where Ay (x) represents
a function that returns an anomaly score when x is input.
{x; }Y, and {x} }9’;1 represent normal and anomalous data,
respectively, and are sorted to rank each sample’s anomaly
scores in descending order. N_ and N, represent the number
of normal and anomalous data samples, respectively.

B. Performance evaluation when anomalous data is not used

First, we investigated the performance of ASD when no
anomalous data was used for training. Our experimental results
are shown in Table II. The averaged results (Machine Average)

in Table II show that the DDCSAD loss function outperformed
the DSAD loss function. This result suggests that it is impor-
tant to consider not only the centroid of normal data but also
the centroid of outlier data in order to increase between-class
variance, which is achieved by making the centroids updatable.
Furthermore, the improvement in performance when using
BCE+DDCSAD over that of using either DDCSAD or BCE
alone confirms the effectiveness of multi-task learning.

C. Relationship between amount of anomalous training data
and performance

We added a small amount of anomalous data to the training
data to investigate how this affected performance. For each
machine ID, 64 samples were randomly selected from the
validation and evaluation data’s anomalous data, and moved to
the training data. We then increased the number of anomalous
samples used for training to [1,2,4,...,64] for each method
and observed the performance change. The pre-processing,
learning and inference procedures were identical to those
described in IV-B, but we made the following two changes
in the event that new anomalous data became available during
the operation of the ASD system:

1) The ratio of normal data, outlier data and anomalous
data was set to 32:31:1 so that there was always one
anomalous data sample representing the outlier class in
each mini-batch.

2) We used the model trained without anomalous data as
the initial value, and then halved the total number of
iterations to 2,000.

Experimental results when using the evaluation data are
shown in Fig. 2. We can see from these results that each
method’s performance improves as more anomalous training
data is added. In other words, we can improve the performance
of all of these methods by simply adding anomalous data
to the training data without changing the systems’ structure.
Furthermore, by comparing methods with and without BCE,
we can also confirm that BCE-based methods receive a more
dramatic boost in performance by utilizing anomalous data
during training. This suggests that the proposed multi-task
learning makes more effective use of small amounts of anoma-
lous training data.

V. CONCLUSION

In this paper, we have proposed a multi-task learning
method for detecting anomalous sounds which uses a binary
classification model based on outlier data, and a loss function
based on metric learning. We also proposed DDCSAD, a loss
function that considers the class centroids of both normal
and anomalous data in the feature space, and demonstrated
its effectiveness through experimental evaluation. The rela-
tionship between the amount of anomalous data used during
training and detection performance was also investigated. Our
experimental results showed that the more anomalous data
added to the outlier class during training, the better detection
performance becomes, especially when using a binary classi-
fication model. In future work, we will develop a metric for
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Fig.

TABLE II: Detection results AUC [%] for all machines and loss functions (95% confidence interval [20]).

Machine Type BCE DSAD DDCSAD BCE+DSAD BCE+DDCSAD
fan 92.69 £+ 2.06 82.33£3.00 91.05+2.25 92.96 + 2.02 95.14 £1.70
pump 94.39 £1.88 88.88+2.60 91.71+2.27 89.91 4+ 2.49 92.14 +2.21
slider 90.30 + 2.43 93.46 £2.01 89.97 +2.46 93.38 +2.03 97.60 £1.24
ToyCar 87.82 +1.77 84.10+2.00 91.18+1.51 83.72 £ 2.03 93.85 +1.26
ToyConveyor 75.21 +2.54 68.51 +2.74 68.37£2.74 64.13 +2.82 82.05 £+ 2.25
valve 89.92 + 2.45 90.80 £2.35 88.62+2.59 98.61 +0.94 96.08 £ 1.57
Machine Average 88.39 84.68 86.82 87.12 92.81
100 100 100 —_—
%0 90 90 ;><;\/
£ 8 —+ BCE £ 80 —+ BCE £ 80 —+— BCE
:3(’ 7 DSAD :3(’ 70 DSAD :3(‘ 7 DSAD
DDCSAD DDCSAD DDCSAD
60 — BCE+DSAD 60 — BCE+DSAD 60 —— BCE+DSAD
BCE+DDCSAD BCE+DDCSAD BCE+DDCSAD
50 50 50
1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64
Number of anomalous training data samples Number of anomalous training data samples Number of anomalous training data samples
(a) fan (b) pump (c) slider
100 — 100 100 ——
9% % % 90 ~
g 8 —+— BCE g 80 —+— BCE g 80 —+— BCE
ER DSAD 3 DSAD ER DSAD
DDCSAD DDCSAD DDCSAD
60 —— BCE+DSAD 60 —— BCE+DSAD 60 —— BCE+DSAD
BCE+DDCSAD BCE+DDCSAD BCE+DDCSAD
50 50 50
1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Number of anomalous training data samples

(d) ToyCar

Number of anomalous training data samples

(e) ToyConveyor

Number of anomalous training data samples

(f) valve

2: Change in AUC [%] for each machine and loss function when adding anomalous data (95% confidence interval [20]).

selecting outliers to use for training from large data sets to
further improve performance.
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