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Abstract—Various types of deep learning architecture have
been steadily gaining impetus for automatic environmental sound
classification. However, the relative paucity of publicly accessible
dataset hinders any further improvement in this direction. This
work has two principal contributions. First, we put forward a
deep learning framework employing convolutional neural net-
work for automatic environmental sound classification. Second,
we investigate the possibility of generating synthetic data using
data augmentation. We suggest a novel technique for audio data
augmentation using a generative adversarial network (GAN). The
proposed model along with data augmentation is assessed on
the UrbanSound8K dataset. The results authenticate that the
suggested method surpasses state-of-the-art methods for data
augmentation.

Index Terms—data augmentation, generative adversarial net-
work, deep learning, environmental sound classification

I. INTRODUCTION

A substantial amount of research has been conducted in
the realm of automatic environmental sound classification over
the past few years. Environmental sounds can be defined as
the sounds encountered in day-to-day life excluding speech
and music. Automatic environmental sound classification plays
a decisive role in a wide range of applications such as
content based audio search [1], automatic tagging of audio [2],
surveillance [3], etc. A variety of signal processing algorithms
have been proposed for environmental sound classification. In
particular, deep learning approaches like convolutional neural
networks (CNN) have been steadily gaining impetus in this
context. However, the relative scarcity of publicly available
datasets cripple any further improvement in this direction.

A classic solution to this dilemma is data augmentation.
In data augmentation, the network is trained with additional
synthetic data.The advantages of data augmentation is four-
fold. (1) It increases the training data size (2) It eliminates
the overfitting problem (3) It makes the network more robust
to the variations in data that may be present in any real
world application (4) It makes the network learn the most
relevant features in the training data. The basic idea behind
data augmentation is that the transformations are applied such
that the semantic meaning of the labels associated with the
data do not change. For example, a pitch-shifted or time-
stretched audio of environmental sound would still be an
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audio of environmental sound. By training the network with
this additional data, its performance towards unseen data is
enhanced.

Data augmentation was introduced in object recognition
in 1998 [4]. Motivated by the promising results of data
augmentation in object recognition, Jaitley and Hinton [5] in-
troduced audio data augmentation in speech processing. They
transformed the spectrogram of TIMIT speech dataset by using
a linear warping technique in the frequency domain called
Vocal Tract Length Perturbation (VTLP). Other successful
implementations of data augmentation in speech processing
include [6], [7] and [8]. Similar attempts can be found in music
signal classification also ( [9], [10] and [11]). Despite the
positive results of data augmentation with speech recognition
and music information retrieval, its application is limited in
environmental sound classification (eg. [12], [13]).

A major shortcoming of standard augmentation techniques
is that they are task specific.They increase the number of
hyper parameters in a deep learning structure. This is the
premise of using Generative Adversarial Networks (GAN) for
augmenting data. Bousmalis et al. [14] suggested a GAN-
based model for pixel level domain adaptation. They em-
ployed GAN conditioned on source data and noise vectors.
They defined two types of losses-a task specific loss and a
content similarity loss to stabilize the proposed method. Other
successful implementations of GAN based augmentation are
[15], [16] and [17]. Despite its utility in image processing
applications, the use of GAN for audio data augmentation is
in its infancy yet. The first attempt of generating audio using
GAN was rendered by Donahue et al. [18]. They explored both
time domain and frequency domain strategies for generating
audio with GANS. Lee et al. [19] investigated the possibility
of using GAN conditioned on class labels for generating
audio. They explored concatenation based conditioning and
conditional scaling along with several methods for tuning
hyper-parameters.

In this paper, we investigate the influence of data augmen-
tation in the context of environmental sound classification
using a deep convolutional neural network. Furthermore, a
novel augmentation technique based on generative adversar-
ial network is proposed. The performance of the recom-
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mended method is assessed on a publicly accessible dataset-
UrbanSound8K. We demonstrate that the proposed method
outperforms the state-of-the-art methods for augmentation.
The rest of the paper is organized as follows. Section II
describes the dataset used and the method adopted in this
work. The results obtained from experimental observations and
subsequent discussions are presented in section III. Section IV
concludes the paper and provides some directions for future
research.

II. METHOD
A. Dataset

The proposed method in this work is evaluated on Urban-
Sound8K dataset [20]. This is the biggest publicly accessible
research oriented dataset of urban sound events characterized
by labels. This dataset of 8.75 hours of field recordings con-
tains 8732 sound extracts (< 4s) of urban sounds belonging
to 10 classes: air_conditioner, car_horn, children_playing,
dog_bark, drilling, engine_idling, gunshot, jackhammer, siren,
and street_music. The classes are derived from urban sound
taxonomy. Based on literature survey, it was found that 4
seconds of audio were sufficient for subjects to identify
environmental sounds with 82% accuracy [25]. Hence in
UrbanSound8K, the occurrences are limited to a duration of 4
seconds. Longer occurrences are segmented to 4 second slices
using a sliding window with a hop size of 2 seconds. To avoid
wide variability of class distributions, the authors limit the
number of slices per class to 1000, resulting in 8732 labeled
slices. The slices are randomly allocated into folds while
ensuring that all slices originating from the same Freesound
recording fall in the same fold. It is also ensured that the
number of audio slices per class in each fold is balanced. The
8732 audio slices are prearranged into 10 folds generated using
this method. The audio slices are available in .wav format and
the corresponding metadata file is available in .csv format.

B. Method

1) Deep CNN for classification: The deep convolutional
neural network in this work is adopted from [21]. The raw
audio files are read and processed using Librosa-a python
package for music and audio analysis. The input audio is
chosen such that it has a length of at least 3 seconds. The
valid data which satisfy the above criterion are converted to the
feature space by log scaled mel spectrogram computed with
librosa.feature.melspectrogram using a 2048 point fft window
and a hop length of 512. In order to deal with the variable
length of samples in the dataset, the length of the training
audio is fixed at 2.97 seconds yielding 65,489 samples at a
sampling rate of 22050 Hz. This results in a 128x128 log
mel spectrogram. Fig. 1 shows exemplary audio signals from
the dataset and their corresponding mel spectrograms. Given
the input, the network is trained to learn the parameters of the
function which maps the training audio to a particular label.
The details of the CNN architecture employed is as follows:

o Layer 1: Convolutional layer containing 24 5x5 filters
with stride (1,1). This is followed by a max pooling
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Fig. 1: Exemplary audio signals from the dataset and mel
spectrograms

layer with stride (4,2). The activation function is ReLLU
(Rectified Linear Unit)

o Layer 2: Convolutional layer containing 48 5x5 filters
with no padding followed by max pooling layer with
stride (4,2) and activation function ReLU.

o Layer 3: Convolutional layer containing 48 5x5 filters
with no padding followed by max pooling layer with
stride (4,2) and activation function ReL.U.

o Layer 4: Flattening layer which converts the output of
layer 3 to a numpy array. Dropout is introduced in this
layer with rate 0.5 to introduce more randomness.

o Layer 5: Fully connected layer of 64 hidden units with a
dropout rate of 0.5 and activation function of ReLU.

o Layer 6: Fully connected layer of 10 output units with a
softmax activation function.

The output shape and the number of parameters in each layer
of the employed CNN is shown in Fig. 2. For training, the
model optimizes categorical cross entropy using Adam. A
constant learning rate of 0.001 was used. The training is
stopped after 25 epochs. A validation set is used for hyper
parameter tuning. The CNN was implemented in Python with
Keras.

2) Data Augmentation: Four simple augmentation tech-
niques resulting in five different augmentation sets as sug-
gested in [21] are implemented. The implementation details
of the augmentation techniques are given below.

1) Time stretching (TS): The audio sample is speeded
up or slowed down without changing pitch. The time
stretching is implemented using librosa.effects with a
factor of 1.07.

2) Pitch shifting (PS1, PS2): The audio sample is shifted in
pitch while there is no change in duration. Pitch shifting
is implemented using librosa.effects with two factors 2
and 2.5.

3) Additive background noise (BG): A street scene is added
to each audio sample using the equation z = = + w.y
where z is the original audio sample, y is the background
scene sample and w is a weighting parameter whose
value is fixed at 0.9.

4) Dynamic range compression (DRC): The dynamic range
of each audio sample is compressed either by limiting
loud sounds or by amplifying quiet sounds. In this work,
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Fig. 2: Model summary of CNN

dynamic range compression was applied using a cross
platform command line utility, SoX (Sound eXchange)
[22].

By each augmentation 7479 audio samples were generated
and prearranged into 10 folds similar to the UrbanSound8K
dataset.

3) Data augmentation using GAN: The Generative Adver-
sarial Network for data augmentation is based on WaveGAN
defined in [18]. The output dimensionality of WaveGAN is
16384 samples (corresponding to slightly more than 1s of
audio at 22.05 kHz). Also length-25 1D convolutions are used
with stride 4. The details of the GAN architecture employed
is as follows:

For generator, the input is a random noise uniformly dis-
tributed between -1 and 1.

o Layer 1: Fully connected and Reshape layer with batch
normalization and ReLU activation function which con-
verts the input into 16x 1024

e Layer 2: Transposed convolution layer with stride 4,
batch normalization and ReL.U activation function which
converts the 16x1024 input to 64x512

o Layer 3: Transposed convolution layer with stride 4,
batch normalization and ReL.U activation function which
converts the 64x512 input to 256 x256

o Layer 4: Transposed convolution layer with stride 4,
batch normalization and ReL.U activation function which
converts the 256256 input to 1024 x 128

o Layer 5: Transposed convolution layer with stride 4,
batch normalization and ReL.U activation function which

converts the 1024x 128 input to 4096 x 64

e Layer 6: Transposed convolution layer with stride 4,
and tanh activation function which converts the 4096 x 64
input to 16384 x 1

The discriminator does the opposite of the generator. Its input
is 163841 audio sample.

o Layer 1: Convolution layer with stride 4, zero padding,
leaky ReL.U activation function (o« = 0.2) and phase
shuffle which converts 16384 x1 input to 4096 x 64

e Layer 2: Convolution layer with stride 4, zero padding,
batch normalization, phase shuffle and leaky ReLU acti-
vation function (o = 0.2) which converts the 4096 x 64
input to 1024 <128

o Layer 3: Convolution layer with stride 4, zero padding,
batch normalization, phase shuffle and leaky ReLU acti-
vation function (o = 0.2) which converts the 1024 x 128
input to 256256

o Layer 4: Convolution layer with stride 4, zero padding,
batch normalization, phase shuffle and leaky ReL.U acti-
vation function (o = 0.2) which converts the 256x256
input to 64x512

o Layer 5: Convolution layer with stride 4, batch normal-
ization and leaky ReLU activation function ( = 0.2)
which converts the 64x512 input to 16x 1024

e Layer 6: Flattening layer which reshapes the input and
output layer which connects the input to a single logit.

In this work, the dataset is separated classwise and the wave-
GAN is trained on each class for 1000 epochs.The generated
sound files are prearranged to 10 folds similar to the original
dataset. Inorder to ensure that WaveGAN was properly trained,
the generated sound files were evaluated using a similarity
score with the original dataset. For two 1D N-length audio
signals A = {a[n]|} and B = {b[n]} where n = 1,2,..., N,
the similarity metric is defined as

N
(a[n] — bln))?
S = St G B e VA
nz::l aln]?

The lesser the value of S, the more similar the audio files
are. The generated audio files with .S > 0.1 are considered
valid. In this work, 7479 valid audio files are generated in 1.53
hours (using Acer Veriton P330 F3 workstation with NVIDIA
Quadro GPU). Since WaveGAN generates only 16384 samples
(around 1 second audio) the generated samples are periodically
extended to 65489 samples to match the audio samples from
the UrbanSound8K dataset. The periodic extension has an
added advantage that it enhances spectral resolution.

III. RESULTS AND DISCUSSIONS

For each experiment, the performance of the model is
estimated with 10-fold cross validation scheme. A single
training fold is used as a validation set for hyper parameter
tuning. First the CNN is evaluated on the original dataset
without augmentation. This serves as the baseline model for
comparison. For evaluation we use mean per fold classification
accuracy:the most widely used evaluation metric. A mean
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Fig. 3: Distribution of Classification accuracies obtained from
10 fold cross validation

accuracy of 94.84% is obtained for the baseline model. The
obtained result is compared with the accuracies obtained by
various other approaches such as SKM [23], SB_CNN [21],
PiczakCNN [12] and the image recognition networks used by
Boddapati et al. [24]. The results are summarized in Table
I. The results indicate that the baseline model outshines the
state-of-the-art approaches.

TABLE 1
Model Mean per fold Accuracy
SKM [23] 75%
SB_CNN [21] 73%
PiczakCNN [12] 74%
AlexNet [24] 90%
GoogLeNet [24] 93%
Proposed Baseline Model 94.84%

To investigate the effect of augmentation on the dataset, two
basic deformations (time stretching and pitch shifting) and
two progressive deformations (dynamic range compression
and background noise) are applied to the dataset individually.
The results are summarized as a box plot shown in Fig. 3.
In the plot, the symbol Baseline denotes the model without
augmentation, TS denotes Time Stretching by a factor of 1.07,
PS1 denotes Pitch Shifting by a factor of 2, PS2 denotes
Pitch Shifting by a factor of 2.5, DRC denotes Dynamic
Range Compression, BG denotes Additive Backgorund Noise
and GAN denotes proposed augmentation technique using
GAN. The line inside each box denotes the median of the
data. The mean is identified with a marker (green triangle).
The circles indicate the outliers. From the box plot, the
following observations can be made: (1) The box length
indicates that the classification accuracy has a large variability
when basic deformations implemented with /ibrosa.effects are
applied. (2) For baseline method and the proposed approach
(GAN), the box lengths are almost the same suggesting that

model accuracy model loss

(a) Model Accuracy (b) Model Loss

Fig. 4: Training history of model with proposed augmentation

the standard deviations are almost same. (3) For GAN, the
whiskers extending from both sides of the box have the
same length indicating that the classification accuracies are
distributed symmetrically around the mean value. For all other
methods, the whiskers are of unequal length indicating that the
distribution of classification accuracies is skewed. The mean
classification accuracies and standard deviations obtained from
this plot along with percentage improvement in accuracy are
presented in Table II. From the table, it is clear that basic
deformations (time stretching (TS) and pitch shifting (PS1
and PS2)) degrade the performance of the baseline model on
UrbanSound8K dataset as indicated by the negative values in
the last column. The progressive deformations (dynamic range
compression (DRC) and additive background noise (BG)) give
comparable performance to the baseline model. A significant
improvement in accuracy is obtained only in the proposed
method (GAN) as indicated by the last row of Table II.

TABLE 11
Method | Mean per fold | Standard | Percentage
Classification Deviation | Improvement
Accuracy(%) in Accuracy
Baseline | 94.84 0.0131
TS 80.08 0.0241 -15.56
PS1 76.69 0.0301 -19.14
PS2 77.16 0.0332 -18.64
DRC 95.31 0.0173 +0.5
BG 93 0.021 -1.94
GAN 97.03 0.0112 +2.31

Fig. 4 and Fig. 5 summarize the results obtained by ap-
plying the proposed augmentation technique using GAN on
UrbanSound8K dataset. The training history of the model on
training and validation datasets can be visualized in terms of
two plots (a) A plot of model accuracy over training epochs
and (b) A plot of model loss over training epochs as shown
in Fig. 4. The plot of accuracy indicates that the performance
of the model is comparable on both training and validation
datasets. We can see that the training for the model is adequate
since the trend for accuracy is stagnant on both datasets. The
plot of loss indicates that the model is neither underfit nor
overfit since validation loss is comparable to training loss. The
parallel plots suggest that early stopping is not needed.

The method yielded a mean per fold classification accuracy
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Fig. 5: (a) Confusion matrix of augmentation using GAN (b)
Difference between the confusion matrices with and without
augmentation

of 97.03% with a standard deviation of 0.01. Fig. 5 shows the
performance of the proposed augmentation method by means
of confusion matrix and the difference between the confusion
matrices with and without augmentation. In these matrices, the
symbols Al, CA, CH, DO, DR, EN, GU, JA, SI and ST stand
for the classes air_conditioner, car_horn, children_playing,
dog_bark, drilling, engine_idling, gunshot, jackhammer, siren,
and street_music respectively. The positive main diagonal
entries indicate that the classification accuracy is enhanced
for all classes with augmentation.The negative off diagonal
entries suggest that the confusion between the concerned
classes is decreased while the positive off diagonal entries
suggest that the confusion between the concerned classes is
increased. For example, the confusion between air_conditioner
and children_playing classes is reduced while that between
drilling and air_conditioner is enhanced.

IV. CONCLUSION

In this work, we investigated the possibility of generating
synthetic audio data using a novel technique based on Genera-
tive Adversarial Networks. A baseline model employing a deep
convolutional neural network was developed for environmental
sound classification. The baseline model outperformed the
state-of-the-art approaches for environmental sound classifi-
cation. The performance of the baseline model can further
be improved by using the proposed augmentation method.
We compared the performance of the proposed augmentation
method with four different basic deformations. We observed
that the basic deformations degrade the performance of the
baseline model. The adopted GAN architecture outputs 16384
samples (slightly more than 1s of audio at 22.05 kHz). This
output length is not sufficient for automatic environmental
sound classification. We circumvent this problem by periodic
extension of the GAN output. The generalization to longer
output by modifying the GAN architecture is an interesting
direction for future research. We wish to explore this idea
further.
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