
Estimation of Measurement-Noise Variance for

Variable-Step-Size NLMS Filters

Tilo Strutz

Deutsche Telekom, Leipzig University of Telecommunications (HfTL), Institute of Communications Engineering

Gustav-Freytag-Str. 43–45, 04277 Leipzig, Germany

Abstract—Least-mean-square (LMS) filters are a well-studied
processing technique that adapts iteratively to an unknown
process. It has been proven that the parameters of the LMS
filter converge to the optimum (Wiener) solution. Unfortunately,
this is only possible if the adaptation steps are infinitely small.
Small steps, however, result in slow convergence. The challenge is
to vary the step size such that they are large, when the LMS filter
coefficients are far from their optimal values and to lower the
step size, when the adaptive system is approaching the optimum.
State-of-the-art approaches to variable-step-size determination
take estimates of the measurement noise into account for optimal
performance.

This paper proposes a new technique for the estimation
of the measurement-noise variance, which also can deal with
sudden changes of the unknown system. Based on investigations
with a broad range of experimental conditions in terms of test
signals and different measurement-noise levels, it is shown that
the proposed estimation technique is robust to changes of the
unknown system and outperforms other methods.

Index Terms—least mean squares, NLMS, measurement-noise
estimation, adaptive systems, change detection

I. INTRODUCTION

Adaptive filters based on the least-mean-squares (LMS)

principle are a mature and well-studied optimisation tech-

nique [1] which allows to iteratively adjust the parameters

of finite-impulse-response (FIR) filters based on a stochastic

approximation of the gradient-descent method [2]. The general

idea can be explained in application to system identification,

Figure 1. An unknown system having the impulse response1

h = (h0 h1 . . . hL−1) processes an input signal x[n]
and outputs a corresponding signal d′[n]. Typically this output

is not directly accessible, but it is disturbed by noise. This

could be additive noise as represented by v[n] in Figure 1

leading to d[n]. The latter is the desired signal and acts

as reference. The impulse response h has to be estimated

using an adaptive system that works in parallel. It is fed with

the same input signal and outputs signal y[n]. The adaptive

system is defined by its own, time-variant impulse response

a[n] = (a0 a1 . . . aM−1) with a length of M . The output

of the adaptive system at time step n

y[n] = a[n] · x[n] (1)

is based on the tap input vector x[n] = (x[n] x[n−1] · · · x[n−
M+1])T which requires the choice of a suitable number M
of filter taps allowing the emulation of h.

The idea is to use a time-dependent vector a[n] such that the

energy of the difference signal e[n] = d[n]− y[n] approaches

1For a system with infinite impulse response, L is equal to infinity.

Fig. 1. Principle of estimating the impulse response h of an unknown system
using an adaptive system

its minimum. The required derivations (see [3] or [4]) lead to

incremental updates for the LMS filter parameters:

a[n+ 1] = a[n] + µ′ · e[n] · x[n] . (2)

The correction term contains three values: the current error

e[n], the input signal vector x[n] , and a so-called learning

rate µ′. This learning rate (or ‘step size’) influences the speed

of adaptation, and also the quality of the adaptation after

convergence.

The basic convergence properties of the LMS filter are

understood for a long time [5], [6] and have been analysed

under specific conditions [7], [8]. Different techniques have

been proposed to accelerate the speed of convergence [9],

[10]. The iterative estimation process introduces noise into the

vector of filter coefficients that is proportional to the speed

of adaptation and is also proportional to the number of filter

taps. This adaptation noise prevents the LMS filter to reach

the optimal (Wiener) solution. With other words: the choice

of µ′ controls the compromise between fast convergence (and

low accuracy of estimation, steady-state misalignment) and

highly accurate estimation of filter coefficients (and very slow

convergence).

One problem with the adaptation rule (2) is that if the energy

of x[n] is large, the correction term becomes large as well

and introduces noise into the weights vector. This problem

can be alleviated by proper normalisation [11], [12]. In [3],

the corresponding relation for normalised LMS (NLMS) filters

has been derived as principle of minimal disturbance. Due to

the constraint that the adaptation step leads to a filter output

identical to the reference signal value, the change in weights

should be minimal. The derivations lead to a modified version
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of (2):

a[n+ 1] = a[n] + µ · e[n] ·
x[n]

||x[n]||2 + ε
ε > 0 . (3)

The constant ε prevents possible division by zero. In [6],

[13]–[15], the convergence properties of the NLMS filters

have been evaluated for zero-mean Gaussian distributed input

signals. The proposal of [14] has been analysed more in

detail in [16]. Other approaches with variable learning rates

have been discussed in [17]–[19], for example, while adapting

ε as a regularisation term. Valin has adopted this idea for

non-stationary sources in application to double-talk [20]. The

earliest attempts to variable step sizes were based on LMS

without normalisation [21], [22], which also inspired [23]. All

these variable-step-size (VSS) approaches try to use a large

adaptation step when the estimation is far away from the true

impulse response (in order to achieve fast convergence) and

to decrease the steps when the estimated impulse response is

getting closer to the desired one. This is typically achieved by

tuning one or more parameters. Their optimal values depend

on the signal characteristics, so that the methods mostly are

not suitable for any application. Benesty et al [24] showed a

nice derivation towards a non-parametric algorithm, however

the result requires the knowledge of the true measurement

noise variance σ2
v. In application to acoustic echo cancellation,

they proposed to estimate the noise during silent sections.

As in [24], also in [25] the relation between the variance

of measurement noise and the error signal is exploited in an

effective manner.

More recently, a method has been derived in [26] based

on a joint optimisation of µ and ε minimising the system

misalignment. The same approach has been presented in [27]

in application to acoustic echo cancellation. However, like

[24], the algorithm does not include the required estimation

of the measurement-noise variance σ2
v, but refer to [28],

which has already addressed the problem of measurement-

noise estimation and change detection.

In combination with the methods of [24] and [26], this paper

proposes a new approach to robust estimation of measurement

noise that can reliably handle sudden changes in the unknown

system and is capable of responding accordingly and allowing

rapid adaptation convergence even after such changes. The

investigations have been performed under various conditions

making statements about the general applicability possible and

thus serve the comprehensive experimental validation.

The paper is organised as follows. Section II first discusses

two state-of-the-art approaches to step-size adaptation that will

be used later in the investigations. Section III presents two

methods for measurement-noise estimation; the first is state

of the art from [28] and the second is a new low-complexity

proposal. Section IV describes the investigations and presents

results. The paper finishes with a summary in Section V.

II. VARIABLE STEP SIZE METHODS BASED ON ESTIMATED

MEASUREMENT NOISE

A. Noise-Error relation

Benesty et al [24] developed a method which is based on the

knowledge of the true measurement noise power σ2
v. They have

derived the step size as µ = (1− σv/σe) changing equation

(3) to

a[n+ 1] = a[n] +

(

1−
σv

σe

)

· e[n] ·
x[n]

||x[n]||2 + ε
, (4)

where σe is the standard deviation of the error signal {e[n]}.
While σe could be easily estimated from the recorded error

signal, the standard deviation σv of the measurement noise is

not directly accessible.

B. Joint step size and regularisation optimisation

In [26], a method has been proposed aiming at the minimisa-

tion of system misalignment. The adaptation process requires

two predefined variables: m, which is initialised with a small

positive number, and σ̂2
w[n − 1] = 0, which expresses the

variance of the filter updates.

During the adaptation process following is calculated:

p = m+M · σ2
w[n− 1] (5)

σ̂2
x =

1

M
· ||x[n]||2

µ′ =
p

(M + 2) · p · σ̂2
x +M · σ̂2

v

, (6)

where M is the number of filter taps in a. In comparison to (3),

it can be seen that the strength of normalisation is controlled

by p, while the regularisation term is defined depending on

the estimated measurement-noise variance σ̂2
v.

After adjusting the estimated impulse response a with

u[n] = µ′ · x[n] · e[n]

a[n] = a[n− 1] + u[n] ,

the control parameters m and σ̂2
w must be newly determined:

m = (1− µ′ · σ̂2
x) · p and

σ̂2
w[n] =

1

M
· u[n]T · u[n] . (7)

III. METHODS FOR MEASUREMENT-NOISE ESTIMATION

Unfortunately, the estimation of σ2
v has not been specified

in [24] and [26]. The authors of the latter paper referred

to different estimation methods in the literature and did not

analyse its influence on the algorithms performance. We found

that the measurement noise must in fact be carefully estimated

because reliable estimates distinctly benefit the steady-state

performance.

This section first repeats a state-of-the-art method for

measurement-noise estimation. Afterwards a new robust es-

timation technique is introduced.

A. Estimation based on crosscorrelation of input and error

signal

In application to echo cancellation, Iqbal and Grant esti-

mated the measurement noise in [28] with

σ̂2
v = σ̂2

e −
rex · r

T
ex

σ̂2
x

. (8)
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Under the premise that the input signal {x[n]} and the error

signal {e[n]} have a mean equal to zero, the variances on the

right side of (8) can recursively be estimated by

σ̂2
e ← wi · σ̂

2
e + (1− wi) · (e[n])

2

σ̂2
x ← wi · σ̂

2
x + (1− wi) · (x[n])

2 , (9)

with wi = 1 − 1/(6M) as smoothing factor as suggested

in [29]. The crosscorrelation vector is calculated in a similar

manner

rex ← wi · rex(n) + (1− wi) · x[n] · e[n] . (10)

B. New measurement-noise estimation

With regard to equation (4), the basic idea of the proposal

is not to focus on the most accurate estimates σe and σv,

but rather to address the relationship between them. Under

stationary conditions, σv is constant and the value of σe

converges to σv with the progress of adaptation. Hence, if

σe is estimated based on recent samples, it is closer to σv

compared to the case where it is estimated including earlier

samples. That is why we apply a fast (f), a medium (m) and

a slow (s) estimator working in parallel:

s2f ← wf · s
2
f + (1− wf) · (e[n])

2

s2m ← wm · s
2
m + (1− wm) · (e[n])

2

s2s ← ws · s
2
s + (1− ws) · (e[n])

2 , (11)

with weights of ws = 1 − 1/(45M), wm = 1 − 1/(15M),
and wf = 1−1/(5M). In contrast to the statement in [29] we

need wf < ws in order to make s2f the better estimate of σ2
v.

The initial values are set to s2f = s2m = s2s = 0. The values

of the weights have empirically been determined leading to

good performance under all tested conditions. Figure 2 shows

a typical course of these estimates (a, b, c) if the unknown

system has been changed at n = 1000.

It is assumed that the minimum estimate is the most suitable

one

s2min = min(s2f , s
2
m, s

2
s ) (12)

and the measurement noise is rapidly adapted to this value

σ̂2
v ← wf · σ̂

2
v + (1− wf) · s

2
min . (13)

This procedure describes the normal mode and has to be

supplemented with a change-detection mechanism. As soon

as s2f > s2s is observed, the estimator activates the change

mode, which is entered at next time step. Arrived in change

mode, σ̂2
v is modified only if this mode is entered for the first

time2 or s2f has dropped below s2m:

σ̂2
v ← wm · σ̂

2
v + (1− wm) · s

2
min . (14)

Otherwise the estimate of the measurement noise is kept fix

as can be seen in Figure 2, curve e) at 1000 < n < 1100. The

procedure returns to the normal state as soon s2m < s2s holds.

Independent on the current mode, the final check is

σ̂2
v ← min(σ̂2

v, s
2
f ) . (15)

Curve e) of Figure 2 shows the resulting estimates of σ̂2
v.

It can be clearly seen that these estimate are more accurate

than the estimates based on (8), curve d), after starting the

adaptation process and, even more important, after changes of

the unknown system.

While the estimation according to Subsection III-A requires

5+2 ·M multiplications, the complexity of the proposal is re-

duced to eight multiplications in maximum as the computation

of the crosscorrelation vector is not required.

All thresholds and weights used in this approach have been

determined empirically and work well for the broad range

of different scenarios. In real application with some pre-

knowledge about the characteristics of the unknown system or

the input signals, these parameters can probably be optimised.

IV. INVESTIGATIONS

A. Experimental set-up

The two VSS techniques described in Section II (‘Bene’,

[24] and ‘Cioc’, [26]) have been combined with either the

estimation method of [28] (‘ Iqba’, see Subsection III-A) or

with the proposed approach as described in Subsection III-B

(‘ new’). These four combinations have been compared with

each other and with the standard NLMS method (equation (3),

µ = 1) using different test signals x[n] of length N = 2000
each. According to the block diagram in Figure 1, the signals

pass a simulated unknown system with an impulse response

h. White Gaussian measurement noise (σ2
v = 0.01) is added

afterwards:

d[n] = v[n] +

L−1
∑

j=0

hj · x[n− j] . (16)

The investigations aim at general statements about the per-

formance of the different methods independent on any previ-

ous knowledge about the unknown system or the properties of

the input signals. So, the results shall be valid in general case.

Therefore, a broad range of possible combinations have been

simulated. The intensive performance study serves as indis-

pensable validation of the mathematically derived approaches.

Intermediate filter taps h′

j , j = 0, 1, . . . , L− 1, are randomly

2This condition is needed after initialisation of the adaptation process.
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TABLE I
MISALIGNMENT (MSE IN DB) AFTER 2000 ADAPTATION STEPS OF

DIFFERENT APPROACHES DEPENDENT ON USED TEST SIGNAL (x1 .. WHITE

NOISE; x2 AR(3); x3 .. NON-LINEAR; x4 .. HARMONIC COMPONENT; x5 ..
SPEECH SIGNAL). BEST RESULTS ARE SHOWN BOLD FACE; SECOND BEST

ARE PRINTED IN ITALICS. WORSE RESULTS THAN FOR NLMS ARE

UNDERLINED.

method x1[n] x2[n] x3[n] x4[n] x5[n]
NLMS -16.80 -17.04 -16.49 -17.12 -15.32

Bene Iqba -19.84 -14.39 -19.28 -7.12 -13.92
Bene new -19.76 -17.55 -19.29 -16.61 -16.25

Cioc Iqba -19.79 -16.44 -19.05 -12.79 -14.63
Cioc new -19.76 -17.51 -19.76 -17.26 -16.52

drawn from a uniform distribution with [−0.5 . . . 0.5]. The

final impulse response is achieved by normalisation:

h = h
′/
√

h′ · h′T . (17)

This vector is perturbed after N/2 steps. For evaluation

purposes, the adaptive system has the same model as the

unknown system and M = L = 10 is used. The different

approaches have been applied to following input signals:

• x1[n]: random sequence, zero-mean, normal distribution

σ = 1,

• correlated input, autoregressive process of order 3, [19]:

x2[n] =
3

2
·x2[n−1]− x2[n−2] +

1

4
·x2[n−3] + x1[n]

• x3[n] =
x3[n−1]

1+(x3[n−1])2 + (x1[n])
3 (nonlinear, [17]),

• x4[n] = sin
(

80π · n
N

+ φ
)

+x1[n] (harmonic, random φ),

• x5[n]: snippet from a speech signal,

The start positions of x5[n] randomly vary within a range of

400 samples. During the processing of the entire signal xi[n],
the squared error e2i [n], ∀n = 1, 2, . . . , N is recorded.

For each test signal, the procedure is repeated T = 400
times in order to alleviate the influence of different impulse

responses and different signal realisation caused by the random

elements. The squared error signals are averaged over all these

T trials and the mean squared error is computed for each

position n in decibel:

MSE[n] = 10 · log10

(

1

T
·

T
∑

i=1

e2i [n]

)

. (18)

The final performance measure for steady-state misalignment

is based on the last two-hundred MSE values

MSE =
1

200
·

N
∑

n=N−199

MSE[n] . (19)

In correspondence to the settings explained above, this implies

that the convergence should have finished within 800 steps

after the last perturbation of the unknown system. As this

implication is not always given, the MSE values indirectly

also express the convergence rate of the approaches.

B. Results

The performances in terms of final MSE are listed in Ta-

ble I. While for the white-noise signal x1[n] the performance

is almost the same for all investigated VSS methods, the
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200 400 600 800 1000 1200 1400 1600 1800 2000

 n

-20

-15

-10

-5

0

M
S
E
[n
]
in

d
B NLMS

Bene_Iqba

Bene_new

Cioc_Iqba

Cioc_new

b)

200 400 600 800 1000 1200 1400 1600 1800 2000

 n

-20

-15

-10

-5

0

M
S
E
[n
]
in

d
B

c)

200 400 600 800 1000 1200 1400 1600 1800 2000

 n

-20

-15

-10

-5

0

M
S
E
[n
]
in

d
B NLMS

Bene_Iqba

Bene_new

Cioc_Iqba

Cioc_new

d)

200 400 600 800 1000 1200 1400 1600 1800 2000

 n

-20

-15

-10

-5

0

M
S
E
[n
]
in

d
B NLMS

Bene_Iqba

Bene_new

Cioc_Iqba

Cioc_new

e)

200 400 600 800 1000 1200 1400 1600 1800 2000

 n

-20

-15

-10

-5

0

M
S
E
[n
]
in

d
B

Fig. 3. Course of mean squared error applied to: a) x1[n]; b) x2[n]; c) x3[n];
d) x4[n]; e) x5[n]

proposed estimation of σ̂2
v shows distinct advantages for all

other test signals. Inspecting the MSE graphs in Figure 3, it

is obvious that the proposed method for measurement-noise

estimation benefits also the speed of convergence.

When reducing the simulated measurement noise to σ2
v =

0.001, none of the VSS approaches can beat NLMS in

application to x2[n] and x4[n], Table II. Nevertheless, the

proposed method still improves the adaptation compared to

the estimation according to [28]. Table III lists the results

for σ2
v = 0.1. As expected, the MSE values are much higher.
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TABLE II
MISALIGNMENT (MSE IN DB) WHEN USING σ

2
v = 0.001

method x1[n] x2[n] x3[n] x4[n] x5[n]
NLMS -26.80 -26.86 -26.49 -27.09 -19.12

Bene Iqba -29.84 -15.84 -29.27 -7.39 -15.44
Bene new -29.78 -21.79 -29.28 -19.73 -18.92
Cioc Iqba -29.77 -18.95 -29.10 -13.78 -16.36
Cioc new -29.76 -21.33 -29.73 -20.72 -19.24

TABLE III
MISALIGNMENT (MSE IN DB) WHEN USING σ

2
v = 0.1

method x1[n] x2[n] x3[n] x4[n] x5[n]
NLMS -6.80 -7.06 -6.49 -7.12 -6.99

Bene Iqba -9.84 -8.63 -9.28 -5.16 -8.04
Bene new -9.73 -9.27 -9.27 -9.05 -8.97

Cioc Iqba -9.80 -9.26 -9.05 -8.10 -8.49
Cioc new -9.74 -9.33 -9.77 -9.28 -9.14

However, the relation between the values is pretty much the

same as in Table I.

V. SUMMARY

The paper has presented a new technique estimating the

measurement-noise variance more accurately and with lower

complexity than a state-of-the-art method. The proposed ap-

proach has been combined with two variable-step-size NLMS-

filter methods leading to superior performance in terms of

convergence speed and steady-state misalignment, especially

in changing environments, regardless of the chosen simulated

measurement noise.

The investigations have comprised many different condi-

tions in terms of impulse responses for the unknown sys-

tem, input signals, and measurement noise. This experimental

validation allows general statements about the performance

of the tested approaches without restriction to a particular

application.

The proposed method relies on some parameters that have

been set empirically. The recursive estimation of different

variances, for example, is based on weighing factors. Here,

the relation of these factors is of higher importance than the

single values themselves.

In this work, the proposed method has only been investi-

gated in application to system identification. Its applicability

to other tasks has to be tested in future research. Supporting

reproducible research, the software used for the investigations

can be downloaded from [30].
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