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Abstract—Deep end-to-end learning is a promising approach
for many types of audio classification tasks. However, in fields
such as health care and medical diagnosis, training data can
be scarce, which makes training a neural network from the
raw waveform to the target a challenge. In this work, we focus
on a public dataset of human snore sounds, categorised into
four classes, where one particular class has only a few training
samples. We emphasise the pitfalls that need to be taken into
account when working with such data and propose an end-to-
end model providing a performance similar to that of other deep
and non-deep approaches. Furthermore, we show that a model
using only convolutional layers outperforms a model employing
also recurrent layers.

Index Terms—End-to-end learning, audio classification, repre-
sentation learning, snore sounds, scarce data

I. INTRODUCTION

Medical datasets designed for training machine learning
systems are sometimes limited in regard to their size [1]. This
is due to the fact that for rare diseases, only a very limited
amount of patients, and therefore samples, are available.
Furthermore, hospitals might not have resources to contribute
to data collection efforts or face legal constraints. Nevertheless,
high accuracies are usually required in the context of medical
diagnosis as mistakes can have a big impact on a patient’s
life. This makes developing a machine learning-based model,
where one major paradigm is still ‘there is no data like more
data’ a challenging task. This goes especially for end-to-end
models where no hand-crafted features are included in the
recognition chain, but a deep neural network is trained in one
step from the raw signal to the target.

In this contribution, we deal with the exemplary task of
snore sound classification, more specifically, the determination
of four different types of snoring, depending on the location
of obstruction in the throat [2]. The usual procedure for this
is to perform a drug-induced sleep endoscopy (DISE) with
the patient; in contrast to that, an automatic recognition of the
snoring type from audio recordings made during the natural
sleep of a patient would be fully complication-free.

As shown by Qian et al. [3], hand-crafted acoustic features
that are known to be meaningful for certain tasks, e. g., Mel-
frequency cepstral coefficients (MFCCs), are far from giving
optimal results for the task at hand. End-to-end neural net-
works have the advantage that the step of feature engineering
is avoided, while still being able to extract relevant domain-
specific representations of the signal. We will show that also

for the employed dataset, deep end-to-end learning from the
raw signal yields results comparable to those achieved with
hand-crafted features and is robust against changes of hyper-
parameters, even though the classes are highly imbalanced.

The following section summarises recent work on end-
to-end learning for audio recognition tasks. In Section III,
the snore sounds database used throughout the experiments
and the corresponding baseline results are introduced. In
Section IV, we propose our end-to-end models and motivate
architectural choices. Next, experiments and results are pre-
sented in Section V. Finally, we conclude and give an outlook
on open research questions in Section VI.

II. RELATED WORK

Whereas in image classification tasks, neural networks are
usually using the raw pixel values as an input, audio classifica-
tion is very often relying on hand-crafted features or–at least–
spectrogram representations of the audio signal [4], [5]. Using
a convolutional neural network (CNN) along the time axis
to extract features from the waveform, filters with properties
similar to a Mel-filterbank can be learnt autonomously [6].
Nevertheless, these features have been found to perform worse
than spectrogram features. Golik et al. found that for automatic
speech recognition (ASR) tasks, word error rates obtained with
features extracted from trained one-dimensional convolutional
layers are only slightly higher than those for a system using the
well-established MFCCs [7]. The authors tried lengths from
128 to 1024 for the filter kernel (corresponding to a range
of 8 ms to 64 ms for the sampling rate of 16 kHz) without
facing a meaningful difference in performance, though they
found that a system using two convolutional layers slightly
improves the performance. Tüske et al. proposed a model
consisting of two convolutional layers, while the 2nd one
can be interpreted as an envelope extraction step, using a
rectified linear unit (ReLU) as activation function for the 1st

layer [8]. Though they conclude that the learnt features are
less robust when used with another back-end, i.e., classifier
model, they perform “nearly equally” to models employing
hand-crafted features. Nevertheless, Menne et al. showed that
ASR systems using MFCCs are still significantly superior to
end-to-end models when training on small amounts of data [9].
Moreover, they also state that learnt features are less robust
to noise and mismatches between training and test data pre-
processing chains.
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Published works have shown that end-to-end architectures
consisting of a CNN using the raw waveform as input and
a recurrent neural network (RNN) outperform many other
approaches also in the field of speech emotion recognition.
Trigeorgis et al. and Tzirakis et al. use two convolutional
layers (20 filters of 5 ms length/40 filters of 500 ms length)
as a feature extraction front-end [10], [11]. They use ReLU
activations to model the rectifying properties of the cochlear
transduction in the human inner ear. After the 1st layer,
a maximum-pooling across time is applied (pool size 2),
after the 2nd layer, a maximum-pooling across channels is
performed (pool size 10). Furthermore, they apply dropout
(factor 50 %) for regularisation. In the back-end, the authors
use a two-layer bidirectional long short-term memory (LSTM)-
RNN to predict time-continuous emotional states. Sang et
al. employ a similar architecture for classification of urban
sounds [12].

Aytar et al. proposed SOUNDNET, transferring discrimina-
tive knowledge from the video domain to the acoustic domain,
learning a deep CNN consisting of 8 convolutional layers [13].
Recently, architectures have been proposed that use very
small convolutional filter sizes but consequently much more
layers. Lee et al. have introduced SAMPLECNN for music
classification, a sample-level neural network overcoming the
common frame-structure [14]. Their model consists of a stack
of nine one-dimensional convolutional layers of a length of
only 3 samples each and subsequent maximum-pooling layers,
ending up in more than 2 million model parameters for the
whole network. The authors report a performance comparable
to spectrogram-based CNNs. Pons et al. find that sample-level
networks outperform spectrogram-based CNNs for a music
tagging task, if enough training data (≈ 1 million samples)
are available, while achieving almost the same performance
for smaller amounts of data [15]. They use a model similar to
that of Lee et al. [14], but with a lower number of filters in
each layer (64–256, compared to 128–512 in SAMPLECNN).
Pons and Serra further show for a range of music classification
tasks, that feature extraction front-ends using random weights
perform close to those trained in an end-to-end manner [16].
They conclude that the architecture itself is the most important
aspect of the feature extraction part, where sample-level front-
ends result in the best performance in their work.

Even though authors in most related works point out the
necessity of large amounts of data, in this contribution, we
want to show that it is feasible to learn a model from the raw
audio signal also from scarce datasets.

III. CORPUS

All experiments in this contribution are conducted on
the publicly available Munich-Passau Snore Sound Corpus
(MPSSC) [2], introduced in the 2017 Computational Paralin-
guistics Challenge [17]. The dataset comprises 828 audio files
containing single snore events from 219 subjects, collected at
three different medical centres in Germany. One snore event
is an isolated snore sound recorded through a headset during
DISE. Each event has been labeled as one out of 4 different

TABLE I
NUMBER OF SNORE EVENTS FOR EACH SNORE TYPE (V, O, T, E) AND
EACH PARTITION (TRAINING, DEVELOPMENT, TEST) OF THE MPSSC.

Partition V O T E SUM
Training 168 76 8 30 282
Development 161 75 15 32 283
Test 155 65 16 27 263
SUM 484 216 39 89 828

snore types, corresponding to the location of the vibration in
the upper airways: V (velum), O (oropharyngeal), T (tongue),
E (epiglottis). This procedure was done by a trained expert,
watching the videos recorded simultaneously with the audio
recordings. The snore type is usually constant for all events
from the same patient, except for one patient, where ‘V’ and
‘E’ type snoring were discovered. Subjects’ ages range be-
tween 24 and 78 years, with an average age of 49.8 years and
no significant difference between snore types; most patients
are male. The events have different durations ranging from
0.73 s to 2.75 s (mean: 1.51 s, standard dev.: 0.73 s). All events
have been split into three subject-disjunct partitions (Training,
Development, Test). Statistics on the number of snore events
(i. e., audio files) per class and partition are shown in Table I.

The MPSSC has two main difficulties: Firstly, the number
of instances is quite low and the classes are highly imbalanced
(only 23 events of class T in Training and Development
partition compared to 329 of class V). Secondly, the level
and spectrum of the background noise varies across single
recordings [2]. The challenge baseline approach uses a large-
scale engineered acoustic feature set and a support vector
machine (SVM) classifier. As a metric, the unweighted average
recall (UAR), i. e., the macro-average recall (mean of the per-
class recalls) was used in order to take account of the class
imbalance, with a UAR of 58.5 % on the Test partition [17].
The winners of the challenge, Kaya and Karpov, used a
fusion of the confidence scores from variants of extreme
learning machine and partial least squares regression clas-
sifiers trained on hand-crafted acoustic features and Fisher
vector representations, achieving a UAR of 64.2 % on the Test
set [18]. Competitive results have not only been obtained using
deep neural networks but also with standard classifiers such
as SVMs [19], [20], and (even) naı̈ve Bayes [3] classifiers,
which are known to generalise well also on scarce training
data. Amiriparian et al. achieve a UAR of 67.0 % on Test
with features computed by a pre-trained image classification
network using the spectrogram representations of the snore
sounds as an input and an SVM [19]. Qian et al. obtain a UAR
of 69.4 % employing wavelet-based bag-of-audio-words [21]
representations and naı̈ve Bayes [3], choosing the optimum
feature type on the Test set. Demir et al. use a fusion of
histograms of oriented gradients and local binary patterns and
an SVM [20], with a UAR of 72.6 % on Test, which is the best
result reported so far, choosing the model performing best on
the Development set.

Concerning deep learning approaches, Vesperini et al. em-
ploy a DNN classifier trained with Gaussian mixture model
supervectors from the deep scattering spectrum space [22].
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They achieve a maximum UAR of 67.1 % on the Development
set and a UAR of 67.7 % on the Test set with the same model,
while achieving an even higher UAR on Test for a model
performing worse on the Development set. Wang et al. use a
combination of spectrogram-based CNN and gated recurrent
units (GRU), with a UAR of 63.8 % [23]. Semi-supervised
conditional generative adversarial networks for this task are
proposed by Zhang et al. [24], with a maximum UAR of
67.4 % on the Development set, leading to a UAR of 54.5 %
on the Test set.

IV. METHODOLOGY

In this section, the processing chain and architecture of the
end-to-end neural network model are presented. Most design
choices have been made based on the know-how introduced
in Section II and/or optimisation on the Training/Development
set and are explained in the following subsections.

A. Pre-processing

All files from the MPSSC are provided with a sampling rate
of 16 kHz. The waveforms have zero mean and their absolute
maximum is normalised to 1.0 for each file separately. In
order to deal with the different lengths, signals are continued
periodically to match with the longest instance of 2.75 s
duration. All classes are balanced in the training partition by
upsampling (duplicating) the instances of the minority classes,
to match the number of instances in the majority class. For
each training epoch, the instances are re-ordered to appear in
an alternating order (V, O, T, E, V, O, T, E, . . . ) so that also
each mini-batch is balanced w. r. t. classes. This step prove
to slightly increase the stability of the training. As the usual
cross-entropy loss is weighting each instance with the same
weight by default, the balancing is a very meaningful step for
the training process.

B. Feature-extraction front-end

On the left side of Fig. 1, the feature extraction front-end ar-
chitecture is shown. It is mostly inspired by the SAMPLECNN
architectures introduced before, but with some meaningful
differences. Preliminary experiments have shown that a lower
number of layers and filters captures the signal in a better way.
This might be owed to the relatively low amount of training
data, the short sequences, and the relatively simple acoustic
nature of snore sounds, compared to the music tagging tasks
where the architecture was introduced for. We also found that
a filter length of 4 (and a stride of 2) is more robust than
convolutions with a length of 3.

Starting from the raw unidimensional time signal, we use
two blocks consisting of two convolutional layers followed
by a maximum-pooling and a dropout layer each. Finally, a
single convolutional layer followed by a maximum-pooling
and a dropout layer is attached. It is important to note that the
dropout is independent for each time step and feature map,
unlike spatial dropout, where the dropout is constant for the
whole input space and varies only across feature maps [25].
All convolutional layers employed are one-dimensional (1D),
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Fig. 1. Left: Feature extraction front-end. Right: Three considered back-end
architectures. All convolutional layers are 1D-convolutions with specified (#
filters x size – stride). Maximum-pooling is always with pool size and stride
2. Average-pooling is always global.
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Fig. 2. Experiments to optimise the number of filters and dropout in the
feature extraction front-end using the LSTM, last output back-end. Results
are with a 2-fold CV setup of Training and Development partitions of the
MPSSC. Mean and standard deviation over 5 runs are shown.

however, they map between sequences of features, so they
are two-dimensional convolutions, where the input in the first
layer has only one feature per time step (the waveform). In
subsequent layers, all features (outputs) from previous layers
are taken into account for each time step. In all convolutional
layers, a ReLU activation function is used. It is important
to note that, in comparison to SAMPLECNN, we do not
use batch normalisation (BN) in the front-end as we found
that it degraded the accuracy. With the proposed front-end
architecture and an input sampling rate of 16 kHz, we end up
in a feature sequence with a step size of 16 ms, each one taking
into account temporal context of an interval of approximately
32 ms. This is comparable to the frame step and size of hand-
crafted low-level descriptors [2].
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TABLE II
RESULTS WITH DIFFERENT BACK-END ARCHITECTURES.

CROSS-VALIDATION (CV) RESULTS ARE THE AVERAGE UAR ON
PERMUTED TRAINING AND DEVELOPMENT SETS OF THE MPSSC. ALL
RESULTS INCLUDE A FUSION OF MODELS TRAINED FROM 10 DIFFERENT
RANDOM SEEDS. FOR THE EVALUATION ON THE TEST SET, PREDICTIONS

OF EACH OF THE 10 MODELS TRAINED ON TRAINING/DEVELOPMENT
PARTITION ARE FUSED. EXPERIMENTS HAVE BEEN REPEATED 5 TIMES,

WHERE MEAN AND STANDARD DEVIATION OF THE UARS ARE REPORTED.

# Units last layer (N ) UAR CV UAR Test
± stddev ± stddev

LSTM, last output
50 55.7 % ± 1.8 % 64.5 % ± 2.1 %
100 56.0 % ± 1.6 % 63.8 % ± 1.7 %
150 55.0 % ± 0.8 % 60.9 % ± 3.0 %

LSTM, sequence output + average-pooling
50 59.0 % ± 1.0 % 65.1 % ± 0.8 %
100 57.8 % ± 0.8 % 65.9 % ± 1.3 %
150 57.6 % ± 1.2 % 67.1 % ± 0.6 %

Convolutional layer + average-pooling
50 59.2 % ± 1.2 % 67.8 % ± 0.7 %
100 60.2 % ± 0.5 % 67.0 % ± 1.6 %
150 59.9 % ± 1.4 % 68.0 % ± 0.9 %

C. Back-ends

For the classification, we compare three different back-end
models, summarised on the right side of Fig. 1:
1) A bidirectional LSTM returning only the last output.
The output activation is tanh as we experienced much better
results with it than with ReLU. The LSTM layer is followed
by a BN layer and finally a dense (i. e., fully-connected) layer
with one neuron for each class. The final activation function
is a sigmoid function as the results were more stable (i. e.,
independent from the random initialisation) than with softmax.
2) A bidirectional LSTM returning a sequence as output.
The output activation is also tanh and the layer is followed
by BN. The sequence is processed by a time-distributed dense
layer, i. e., a dense layer at each time-step, with one neuron per
class (sigmoid activation). Finally, the sequence is subjected
to an average pooling.
3) Another convolutional layer with an input size of 24,
larger than that used in the front-end to exploit a larger tem-
poral context (approximately 400 ms of context). The further
layers are exactly the same as in model 2.

The number of LSTM units and convolutional filters is var-
ied in our experiments (see Section V). Attention mechanisms
were also tried but did not provide any advantage, which might
be due to the comparably short audio signal lengths [26].

V. EXPERIMENTS AND RESULTS

The proposed neural network architecture is implemented
in the deep learning framework Keras. In initial experiments,
a mini-batch size of 20 was found to be optimal for all back-
ends. Adam optimiser is used in the default configuration with
categorical cross-entropy loss and a learning rate of 5E−4,
though model performance was quite stable in a larger range
throughout preliminary evaluations. The network is trained
for up to 150 epochs, stopping when the maximum on the
respective validation partition is reached (see below).

TABLE III
COMPARISON OF RESULTS ON THE MPSSC.

Approach UAR Devel. UAR Test
Baseline MPSSC [2], [17] 40.6 % 58.5 %
Kaya & Karpov [18] – 64.2 %
Amiriparian et al. [19] 44.8 % 67.0 %
Wang et al. [23] 51.7 % 63.8 %
Demir et al. [20] 37.8 % 72.6 %
Vesperini et al. [22] 67.1 % 67.7 %
Qian et al. [3] 35.0 % 69.4 %
Zhang et al. [24] 67.4 % 54.5 %
Proposed (end-to-end) 59.1 % 67.0 %

In the first round of experiments, we optimise the num-
ber of filters and the dropout rate for the front-end, using
the LSTM (last output, 100 units) as a back-end. We con-
sider the average UAR on the Development/Training parti-
tion in a 2-fold cross-validation (CV) setup. Three different
configurations for the numbers of filters (M1,M2,M3) =
{(12, 24, 48), (24, 48, 96), (48, 96, 192)} are evaluated, drop-
out is optimised in the range of [0%, 10%, . . . , 80%]. Each
experiment is run 5 times, mean and standard deviations of
the UAR are shown in Fig. 2.

In the second round of experiments, in order to have
a suitable trade-off between the number of parameters and
the model accuracy, we use the feature-extraction front-end
with (24, 48, 96) filters and a dropout of 50 %, where the
standard deviation between evaluations is low. All back-ends
are evaluated, optimising the number of units/filters (N) in
the final layers. As the Training and Development sets are
relatively small and have almost the same size (cf. Table I),
partitions are switched again for validation to obtain results in
terms of a 2-fold CV. For the final predictions on the Test set,
the model predictions (from the models learnt on Training
and Development sets, respectively) are fused by simply
multiplying the network outputs for each class. To further
increase the robustness, the training process is repeated 10
times and all model predictions are fused. To demonstrate the
stability of the final model, each experiment (of 2×10 training
cycles) is run 5 times and mean and standard deviations of the
UARs are reported in Table II.

It is evident that the convolutional back-end model achieves
the best results, independent from the number of units. For a
fair evaluation, we consider the configuration obtaining best
average results in the Training/Development CV, which is a
UAR of 60.2 %, leading to a UAR of 67.0 % on the Test set.
An analysis of the predictions shows that the underrepresented
classes T and E have recalls of 75.0 % and 85.2 %, respec-
tively, whereas most confusion is between the frequent classes
V and O, which is consistent with previous observations [19]
and might be due to the spatial proximity of these two classes.

In comparison with other approaches using hand-crafted
features (cf. Table III), our approach is keeping up well.
Surprisingly, the UAR on the Development set is higher
than with most other approaches, which encourages further
optimisation of model fusion between Training and Devel-
opment set. Moreover, a fusion of our Test predictions with

2019 27th European Signal Processing Conference (EUSIPCO)



the baseline predictions results in a UAR of 69.8 %, showing
that the end-to-end learnt and hand-crafted representations are
complementary, which has already been found by Sainath et
al. for the task of ASR [27]. Finally, the proposed approach is
also computationally quite efficient. On an Nvidia GTX Titan
X GPU card, training the proposed optimum architecture with
one mini-batch (size 20) takes approximately 63 ms, summing
up to a training time of 4:45 minutes when using 150 epochs.

VI. CONCLUSION AND OUTLOOK

We have proven that it is feasible to learn an end-to-
end neural network model for audio classification from the
raw signal, even with a very low and imbalanced number of
training samples at hand. The common finding that dropout–
especially in convolutional layers–is often not required when
using BN [28] is challenged as we achieved best results with
dropout and without BN in these layers. Furthermore, we have
shown that for classification on segment level, a convolutional
layer followed by a pooling step is superior to an LSTM
model.

In the future, it still needs to be proven that the proposed
model also works with data from other audio domains, such
as speech, body sounds, and environmental noises. Moreover,
adversarial training [29] could be a promising extension to
further improve the accuracy of the approach.
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