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Abstract—We revisit the spherical Radon transform, also called
the Funk-Radon transform, viewing it as an axisymmetric con-
volution on the sphere. Viewing the spherical Radon transform
in this manner leads to a straightforward derivation of its
spherical harmonic representation, from which we show the
spherical Radon transform can be inverted exactly for signals
exhibiting antipodal symmetry. We then construct a spherical
ridgelet transform by composing the spherical Radon and scale-
discretised wavelet transforms on the sphere. The resulting spher-
ical ridgelet transform also admits exact inversion for antipodal
signals. The restriction to antipodal signals is expected since the
spherical Radon and ridgelet transforms themselves result in
signals that exhibit antipodal symmetry. Our ridgelet transform
is defined natively on the sphere, probes signal content globally
along great circles, does not exhibit blocking artefacts, supports
spin signals and exhibits an exact and explicit inverse transform.
No alternative ridgelet construction on the sphere satisfies all
of these properties. Our implementation of the spherical Radon
and ridgelet transforms is made publicly available. Finally, we
illustrate the effectiveness of spherical ridgelets for diffusion
magnetic resonance imaging of white matter fibers in the brain.

Index Terms—Harmonic analysis, spheres, spherical Radon
transform, Funk Radon transform, spherical wavelets, spherical
ridgelets.

I. INTRODUCTION

WAVELET transforms on the sphere are becoming a
standard tool for the analysis of data acquired on a

spherical domain [1]–[26].
Of particular note are discrete wavelet frameworks on the

sphere, which can support the exact synthesis of signals from
their wavelet coefficients in a stable manner [6]–[11], [14].
Many of these frameworks have been extended to spin signal
and signals on the three-ball [27]–[30].

However, the effectiveness of wavelets on the sphere is
limited for highly anisotropic signal content. Directional scale-
discretised wavelets on the sphere [9]–[11], [31], [32] go
some way to addressing this shortcoming, however geometric
properties of structures are not exploited. In Euclidean space,
alternative transforms such as ridgelets and curvelets have been
devised for such a purpose [33]–[36], which in turn (may) rely
on the Radon transform [37], [38].

The spherical Radon transform, also called the Funk-Radon
transform, is constructed from the integration of a signal along
great circles [39]. In this article we present a novel take on
the spherical Radon transform, viewing it as a convolution
with a kernel defined by a Dirac delta function in colatitude,
such that it is non-zero along the equatorial great circle only.
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Viewing the spherical Radon transform in this manner helps
to aid intuition, which leads to a straightforward derivation
of its harmonic action (presented previously [40]–[42] in
an alternative manner). In addition, we show that inversion
of the spherical Radon transform is well-posed for signals
that exhibit antipodal symmetry, e.g. in MRI analysis. While
techniques that attempt to invert the spherical Radon transform
are typically approximate [43]–[46], our inversion is exact and
explicit.

First-generation ridgelets and curvelets were constructed on
the sphere in [14]. However these wavelets are constructed
by performing ridgelet and curvelet transforms of the twelve
base-resolution faces of the HEALPIX pixelisation of the sphere
[47] and so do not live natively on the sphere, do not probe
signal content along great circles, and may result in blocking
artefacts, as ackowledged in [14]. Second-generation curvelets
have recently been developed [48] which live natively on the
sphere, exhibit the parabolic scaling typical of curvelets, and
do not suffer from blocking artefacts.

An alternative ridgelet transform on the sphere has been
constructed in [49]. This construction lives natively on the
sphere, probes signal content along great circles and does
not exhibit any blocking artefacts. The ridgelet transform
is constructed from a standard spherical Radon transform,
followed by a wavelet transform on the sphere. Although this
construction has already been demonstrated to be of consider-
able practical use [49], [50], the forward ridgelet transform
is approximated in an iterative manner by an orthogonal
matching pursuit algorithm and an explicit inversion is not
given [49].

In this article we develop a second-generation ridgelet trans-
form on the sphere that exhibits all of the desirable properties
of the construction of [49] and exhibits an explicit forward
and inverse transform that can be computed efficiently and
exactly for signals exhibiting antipodal symmetry. Moreover,
our construction supports spin signals.

The article is structured as follows. First, we present a novel
take on the spherical Radon transform in Sec. II, viewing it as
a convolution on the sphere, which leads to a straightforward
derivation of its harmonic action. The spherical ridgelet trans-
form is presented in Sec. III. The numerical implementation
of our ridgelet transform is presented and evaluated in Sec. IV
and an illustrative application to diffusion MRI is presented
in Sec. V. Concluding remarks are made in Sec. VI.

II. SPHERICAL RADON TRANSFORM

We present a novel take on the well-known spherical Radon
transform, viewing it as an axisymmetric convolution, which
leads to a straightforward derivation of its harmonic action.
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A. Axisymmetric convolution

The axisymmetric convolution � of a square integrable
spin-s function on the sphere sf ∈ L2(S2) with an axisym-
metric kernel sh ∈ L2(S2) is defined by

(sf�sh)(θ, ϕ) ≡ 〈sf, R(θ,ϕ)sh〉

=

∫
S2

dΩ(θ′, ϕ′) f(θ′, ϕ′)
(
R(θ,ϕ)sh

)∗
(θ′, ϕ′) , (1)

where we adopt the shorthand notation for the axisymmetric
spherical rotation operator R(β,α) ≡ R(α,β,0) ∈ SO(3)
parameterised by the Euler angles (α, β, γ). Axisymmetric
convolution may be expressed by its harmonic expansion:

(sf � sh)(θ, ϕ) =
∞∑
`=0

∑̀
m=−`

√
4π

2`+ 1
sf`m sh

∗
`0 Y`m(θ, ϕ) ,

(2)
for spin harmonic coefficients sf `m = 〈sf, sY`m〉 and
sh`0δm0 = 〈sh, sY`m〉. Notice that although two spin func-
tions are convolved, the resultant (sf � sh) is a scalar (s = 0)
function on the sphere [31], [32].

B. Forward transform

The spherical Radon transform, also known as the Funk-
Radon transform, is given by [39]

(Ssf)(θ, ϕ) ≡
∫
S2

dΩ(θ′, ϕ′) sf(θ′, ϕ′) δ(ω̂′ · ω̂) , (3)

where ω̂ and ω̂′ denote the Cartesian vector corresponding to
angular coordinates ω = (θ, ϕ) and ω′ = (θ′, ϕ′), respectively.
In words, the spherical Radon transform is the collection of
line integrals of sf along great circles with poles at ω =
(θ, ϕ), projected onto the point defined by the poles of the
great circles.

By defining the Funk-Radon kernel ξ(θ, ϕ) ≡ δ(θ − π/2),
the spherical Radon transform (Ssf)(θ, ϕ) may be expressed
as an axisymmetric convolution by

(sf � ξ)(θ, ϕ) =

∫
S2

dΩ(θ′, ϕ′) sf(θ′, ϕ′) (R(θ,ϕ)ξ)(θ
′, ϕ′).

Consequently, by noting Eq. (2), the spherical Radon transform
can be expressed in harmonic space by

(Ssf)`m = (sf � ξ)`m =

√
4π

2`+ 1
sf`m sξ

∗
`0 , (4)

where the harmonic coefficients of the Funk-Radon kernel read

sξ`m = (−1)s
√
π(2`+ 1)

√
(`− s)!
(`+ s)!

P s` (0) δm0 . (5)

Viewing the Funk-Radon transform as an axisymmetric
convolution allows us to derive its harmonic representation
in a straightforward manner as

(Ssf)`m = 2π (−1)s

√
(`− s)!
(`+ s)!

P s` (0) sf`m . (6)

C. Inverse transform

An inverse function to Eq. (6) exists if the associated
Legendre functions are well-behaved at the origin. It can be
shown that P s` (0) = O(`−1/2) as ` → ∞, for s � ` (which
is typically the case in practice) and for ` + s even, while
for `+ s odd, P s` (0) = 0. Consequently, the spherical Radon
transform of signals with non-zero harmonic coefficients for
`+ s even only, can be inverted by

sf `m = (S−1Ssf)`m ≡
(Ssf)`m

2π (−1)s
√

(`−s)!
(`+s)! P

s
` (0)

. (7)

For scalar signals, the restriction to signals with harmonic
coefficients non-zero for even ` only corresponds to signals
with antipodal symmetry – unsurprisingly, as the forward
spherical Radon transform necessarily produces antipodal sig-
nals. In practice, inversion can be performed accurately up to
very high `.

D. Properties

We conclude our discussion of the spherical Radon trans-
form by noting two important properties.

1) Shift invariance: The spherical Radon transform is shift
invariant, such that(

S R(α,β,γ) sf
)
(θ, ϕ) =

(
R(α,β,γ) S sf

)
(θ, ϕ) . (8)

2) Eigenfunctions and eigenvalues: By considering the
spherical Radon transform of the spin spherical harmonics
sY`m, we see from Eq. (6) that

(SsY`m)(θ, ϕ) = sλ` sY`m(θ, ϕ) , (9)

The spin spherical harmonics are therefore the eigenfunctions
of the spherical Radon transform, with corresponding eigen-
values sλ` = 2π (−1)s

√
(`−s)!
(`+s)! P

s
` (0).

III. SPHERICAL RIDGELET TRANSFORM

We present a novel spherical ridgelet transform on the
sphere by composing the spherical Radon transform and the
scale-discretised wavelet transform. Our construction permits
an explicit inverse transform to synthesise antipodal signals
from their ridgelet coefficients exactly and satisfies a number
of additional desirable properties. For a complete review of
scale-discretized wavelets see [9]–[11], [31], [32].

A. Ridgelet analysis and synthesis

We define the ridgelet transform on the sphere by the
axisymmetric convolution with the ridgelet sψ(j) ∈ L2(S2):

Gsψ
(j)

(θ, ϕ) ≡ (Gsψ
(j)

sf)(θ, ϕ) ≡ (sf � sψ
(j))(θ, ϕ)

=

∫
S2

dΩ(θ′, ϕ′) sf(θ′, ϕ′) (R(θ,ϕ)sψ
(j))(θ′, ϕ′) , (10)

with ridgelet coefficients Gsψ
(j) ∈ L2(S2) defined on the

sphere.
The rotated ridgelet R(θ,ϕ)sψ

(j)(θ′, ϕ′) should be con-
stant along the great circle defined by ω̂ · ω̂′ = 0 and a
wavelet transverse to the ridge defined by the great circle.
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(a) Colour plot for j = 3 (b) Colour plot for j = 4

Fig. 1. Spherical ridgelets, with axis aligned with the North pole, for various
wavelet scales. Notice that the constructed ridgelets are constant along ridges
defined by great circles and wavelets transverse to ridges.

Such a ridgelet on the sphere can be constructed from an
axisymmetric convolution of the Funk-Radon kernel ξ with
the axisymmetric wavelet 0Ψ(j):

sψ
(j)(θ, ϕ) ≡ (ξ � 0Ψ(j))(θ, ϕ) . (11)

In Fig. 1 ridgelets are plotted for various scales j. Notice that
the ridgelets exhibit precisely the structure desired – probing
signal content along great circles.

The ridgelet transform of Eq. (10) can then be viewed as
the composition of a spherical Radon transform followed by
a wavelet transform:

Gsψ
(j)

(θ, ϕ) ≡ (Gsψ
(j)

sf)(θ, ϕ) ≡ (sf � sψ
(j))(θ, ϕ)

= (sf � ξ � 0Ψ(j))(θ, ϕ) . (12)

A ridgelet scaling function sφ
(j) ∈ L2(S2) must be defined

to capture the low-frequency content of the signal analysed:

sφ
(j)(θ, ϕ) ≡ (ξ � 0Φ(j))(θ, ϕ) . (13)

In terms of operators these relations can be written as,

Gsψ
(j)

=W0Ψ(j)

S and Gsφ
(j)

=W0Φ(j)

S . (14)

We write the ridgelet transform for all ridgelets and the ridgelet
scaling function by

G(θ, ϕ) ≡ (G sf)(θ, ϕ) = (0W S sf)(θ, ϕ) , (15)

where bold notation represents a collection of coefficients.
For antipodal signals sf can be synthesised exactly from its

ridgelet coefficients simply by:

sf(θ, ϕ) = (S−1
0W−1G)(θ, ϕ) . (16)

IV. EVALUATION

Our spherical Radon and ridgelet transforms have been
added to the existing S2LET [10], [31] code that supports the
exact and efficient computation of scale-discretised wavelet
transforms on the sphere, which is publicly available1, and
relies on the SSHT2 code [51] to compute spherical harmonic
transforms and the FFTW3 code to compute Fourier transforms.
In this section we evaluate, on simulations of random antipodal
signals on the sphere, the numerical accuracy, computation
time and asymptotic scaling of the S2LET implementation of
the ridgelet transform on the sphere.

1http://www.s2let.org
2http://www.spinsht.org
3http://www.fftw.org
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Fig. 2. Numerical accuracy and computation time of the spherical ridgelet
transform, averaged over ten round-trip transforms of random test signals. Nu-
merical accuracy close to machine precision is achieved and found empirically
to scale as O(L2), with a factor of O(L) coming from the inversion of each
of the spherical Radon and spherical wavelet transforms. Computation time
is found empirically to scale as O(L3), as expected theoretically. O(L2)
and O(L3) scaling is shown by the solid red lines in panels (a) and (b)
respectively.

A. Simulations

We simulate band-limited test signals on the sphere defined
by uniformly random spherical harmonic coefficients sf`m
with real and imaginary components in [−1, 1]. For `+ s odd
we set harmonic coefficients to zero to satisfy the antipodal
symmetry condition required for inversion. We then compute
an inverse spherical harmonic transform to recover a band-
limited signal on the sphere. A forward spherical ridgelet
transform is then performed, followed by an inverse transform
to synthesise the original signal from its ridgelet coefficients.
Ten simulated signals are considered for range of band-limits
L are considered (band-limits of at least L = 4096 are
feasible; cf. [51]). All numerical experiments are performed on
a 2011 Macbook Air, with a 1.8 GHz Intel Core i7 processor
and 4 GB of RAM. Note that all numerical and computational
results are identical when considering spin signals.

B. Numerical accuracy

Numerical accuracy is quantified by the maximum abso-
lute error between the spherical harmonic coefficients of the
original test signal sfo

`m and the recomputed values sf r
`m, i.e.

ε = max`,m
∣∣
sf

r
`m− sf

o
`m

∣∣. Results of the numerical accuracy
tests, averaged over ten random test signals, are plotted in
Fig. 2(a). The numerical accuracy of the round-trip transform
is close to machine precision and found empirically to scale as
O(L2), with a factor of O(L) coming from both the inverse
Radon and wavelet transforms.

C. Computation time

Computation time is quantified by the time taken to perform
a forward and inverse spherical ridgelet transform. Results of
the computation time tests, averaged over ten random test sig-
nals, are plotted in Fig. 2(b). The computational complexity of
the ridgelet transform is dominated by the spherical harmonic
transform, which scales as O(L3), as seen in Fig. 2(b).

V. ILLUSTRATION

In this section we illustrate the application of the spher-
ical ridgelet transform to the analysis of diffusion magnetic
resonance imaging (MRI) signals acquired on the sphere.
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IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. –, NO. – 4

A. Diffusion MRI signals on the sphere

Diffusion MRI can be used to study neuronal connections
by measuring the diffusion of water molecules along white
matter fibers. In so-called high angular resolution diffusion
imaging (HARDI), diffusion MRI signals are sampled on
spherical shells in each voxel of the brain. The orientation
distribution function (ODF) is approximately given by the
spherical Radon transform of the HARDI signal acquired over
a single spherical shell [52]. Often acquired data is noisy and
incomplete, motivating the development of reqularized ODF
recovery techniques (for a review see [53]).

The HARDI signal is modelled by a sum of weighted
Gaussians, where each Gaussian corresponds to a different
fiber passing through the voxel, and is given by (e.g. [49])

S(ω̂) =
∑
i

piexp(−bω̂TDiω̂) , (17)

where Di is the 3 × 3 diffusion tensor corresponding to
fiber i, b is an acquisition configuration constant, and pi are
fiber weights. We adopt the same parameters as the in silico
experiments of [49]. Three fibers are considered, with Di
computed from D by random rotations. The simulated HARDI
signal and the corresponding ODF are plotted in Fig. 3.

B. Diffusion MRI spherical ridgelet decomposition

Since the diffusion MRI HARDI signal is composed of
a sum of contributions for each fibre that have their energy
concentrated along great circles, it is suggested in [49], [50]
that spherical ridgelets, which have their energy similarly dis-
tributed, are effective for representing HARDI signals and, in
particular, more suitable than spherical wavelets. We demon-
strate and validate these predictions by examining a HARDI
signal in both spherical wavelet and ridgelet representations.

In Fig. 3 we plot wavelet and ridgelet coefficients of
the HARDI signal simulated in Sec. V-A for a range of
scales j. It is clear that ridgelet coefficients of the HARDI
signal are sparser than wavelet coefficients, which exhibit
many large peaks. For the ridgelet decompositions (Fig. 3,
right column), the dominant directions of the ODF signal
(Fig. 3(b)) are visible by eye, which is not the case for the
wavelet decompositions (Fig. 3, left column). In Fig. 4 we plot
histograms of wavelet and ridgelet coefficients for scale j = 4.
The sparseness of HARDI signals in the spherical ridgelet
decomposition, as demonstrated in this simple illustration,
can be exploited in practical applications to handle noisy and
incomplete data.

VI. CONCLUSIONS

The publicly available ridgelet transform presented in this
article is defined natively on the sphere, probes signal content
globally along great circles, does not exhibit blocking arte-
facts, supports spin signals, and exhibits an explicit inverse
transform.

We present a novel take on the spherical Radon transform,
viewing it as a convolution with an axisymmetric kernel.
Such a representation leads to a straightforward derivation
of the harmonic action of the spherical Radon transform,

(a) HARDI signal (b) ODF signal

(c) Wavelet coefficients for j = 5 (d) Ridgelet coefficients for j = 5

Fig. 3. Parametric plots of spherical wavelet (left column, bottom) and ridgelet
(right column, bottom) coefficients of the HARDI signal plotted in the top row.
Notice that ridgelet coefficients are more sparse (i.e. fewer large coefficients)
than the wavelet coefficients.
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Fig. 4. Histogram of (the absolute value of) wavelet (blue) and ridgelet
(red) coefficients for scale j = 4 of the HARDI signal plotted in Fig. 3(a).
Notice that ridgelet coefficients are sparser than wavelet coefficients, with the
ridgelet coefficients containing many coefficients close to zero and fewer large
coefficients. The sparseness of the ridgelet coefficients of the HARDI signal
demonstrates the suitability of spherical ridgelets for diffusion MRI.

which motives an exact inversion technique for signals that ex-
hibit antipodal symmetry. Consequently, our spherical ridgelet
transform also permits the exact inversion for antipodal sig-
nals.

We demonstrate that the numerical accuracy of our trans-
forms is close to machine precision and can be applied to
large data-sets supporting high band-limits L, with computa-
tional complexity scaling as O(L3). Finally, we illustrate the
effectiveness of spherical ridgelets for imaging white matter
fibers in the brain by diffusion MRI.

2019 27th European Signal Processing Conference (EUSIPCO)



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. –, NO. – 5

REFERENCES

[1] J.-P. Antoine and P. Vandergheynst, “Wavelets on the 2-sphere: a group
theoretical approach,” ACHA, vol. 7, pp. 1–30, 1999.

[2] ——, “Wavelets on the n-sphere and related manifolds,” J. Math. Phys.,
vol. 39, no. 8, pp. 3987–4008, 1998.

[3] Y. Wiaux, L. Jacques, and P. Vandergheynst, “Correspondence principle
between spherical and Euclidean wavelets,” ApJ, vol. 632, pp. 15–28,
2005.

[4] J. D. McEwen and A. M. M. Scaife, “Simulating full-sky interferometric
observations,” MNRAS, vol. 389, no. 3, pp. 1163–1178, 2008.

[5] J. D. McEwen, Y. Wiaux, and D. M. Eyers, “Data compression on the
sphere,” A&A, vol. 531, p. A98, 2011.

[6] F. J. Narcowich, P. Petrushev, and J. D. Ward, “Localized tight frames
on spheres,” SIAM J. Math. Anal., vol. 38, no. 2, pp. 574–594, 2006.

[7] P. Baldi, G. Kerkyacharian, D. Marinucci, and D. Picard, “Asymptotics
for spherical needlets,” Ann. Stat., vol. 37 No.3, pp. 1150–1171, 2009.

[8] D. Marinucci, D. Pietrobon, A. Balbi, P. Baldi, P. Cabella, G. Kerky-
acharian, P. Natoli, D. Picard, and N. Vittorio, “Spherical needlets for
cosmic microwave background data analysis,” MNRAS, vol. 383, pp.
539–545, 2008.

[9] Y. Wiaux, J. D. McEwen, P. Vandergheynst, and O. Blanc, “Exact
reconstruction with directional wavelets on the sphere,” MNRAS, vol.
388, no. 2, pp. 770–788, 2008.

[10] B. Leistedt, J. D. McEwen, P. Vandergheynst, and Y. Wiaux, “S2LET:
A code to perform fast wavelet analysis on the sphere,” A&A, vol. 558,
no. A128, pp. 1–9, 2013.

[11] J. D. McEwen, P. Vandergheynst, and Y. Wiaux, “On the computation of
directional scale-discretized wavelet transforms on the sphere,” in SPIE
Wavelets and Sparsity XV, 2013.
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