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Abstract—In this paper, we propose the All-Powerful Learn-
ing (APL) algorithm for multiple Secondary Users (SUs) that
considers the priority access and the dynamic multi-user access,
where the number of SUs changes over time. To the best of our
knowledge, APL is the first learning algorithm that successfully
handles the dynamic users with the priority access. APL does not
require any cooperation or prior information (e.g. the number
of users in the network, or the number of available channels, or
the total number of iterations) as do many existing algorithms.
We should emphasize that the knowledge of previous parameters
can make all these algorithms impractical and difficult to apply.
The experimental results show the superiority of APL compared
to existing algorithms.

Index Terms—Multi-Armed Bandit, Priority Access, Compet-
itive Network , Opportunistic Spectrum Access, All-Powerful
Learning Algorithm, Cognitive Network.

I. INTRODUCTION

THE explosive growth of wireless services and applications
during the past 30 years illustrates the increasing demand

of communications and resources. To tackle the static spectrum
allocation problems, the Cognitive Radio (CR), firstly pro-
posed by Mitola [1], has been proposing several solutions for
Dynamic Spectrum Access (DSA). One of them is Opportunis-
tic Spectrum Access (OSA), where Secondary Users (SUs:
unlicensed users) are allowed to search, identify and exploit
the available spectrum let free by the licensee of the spectrum
band, e.g. Primary Users (PUs: licensed users), while limiting
interference with the PUs. In OSA, a SU tries to identify
spectral white spaces vacated by PUs when are not active.
For strategic and logistic reasons as well as to simplify the
complexity of SU receivers in our working context, we assume
that the SU is able to sense and explore one channel at each
time slot to find transmission opportunities. OSA in cognitive
radio networks (CRNs) presents new challenges comparing to
current wireless networks:

• Detection the activities of PUs: Since, SU should perform
a spectrum sensing operation before transmitting, that can

be achieved for instance by an energy detection [2].
• Sensing a wide radio bandwidth: Due to hardware con-

straints, the processing time and energy costs of spectrum
detection, it is impractical for SU to scan all the channels
at each time slot. Therefore, under a partially observation
(one channel/slot), SU must select a channel to sense in
the time interval and decide whether the detected channel
is free to transmit his data.

• Sharing the white space among SUs while avoiding radio
interference with the PUs: Under the multi-user case,
two learning models can be considered to manage the
secondary network: Cooperative or competitive learning.
In our previous work, we proposed a cooperative learning
algorithm taking into account the priority access [3]. A
cooperative network can provide necessary information to
learn the channels’ availability and reduce the collision
among users. Although, this can increase the exchanged
information and the complexity of the network. In com-
petitive learning scenarios, SUs access selfishly the chan-
nels without any constraint or information exchange with
each other, and they are not subject to any central control.

By focusing on the OSA problem, we propose hereinafter
a competitive learning algorithm to manage the secondary
network. Our algorithm achieves a logarithmic regret (i.e. the
loss of reward of SUs due to non-selection of best channels).
By minimizing the regret, we can increase the transmission
opportunities for the cognitive users. In our simulations, we
evaluate the performance of our algorithm by showing: the
global regret and the percentage of time the best channels
have been used.

II. MULTI-ARMED BANDIT LEARNING ALGORITHMS

Due to its generic nature, the MAB problem takes a
fundamental importance in stochastic decision theory and its
applications can be traced in many engineering problems,
such as: wireless channel access, jamming communication and
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object tracking. The MAB problem can be roughly expressed
as follows: an agent in front of slot machines must decide
which machine to play at each time. Each machine has an
average reward unknown to the user. The user goal is to find
the best machine with the highest average reward, to maximize
his cumulative gain. Generally, a good strategy must make a
trade-off between the exploitation (using the machine with the
highest known reward) or exploration (testing another machine
trying to win more). Therefore, several learning algorithms
have been proposed to solve the MAB issue, such as: TS
[4], UCB [5] and ε − greedy [6]. It should be noticed that
this learning approach is particularly suitable to the OSA
problem, where the SU does not have any prior knowledge on
its environment. Supposing that the time is slotted and the K
independent identically distributed (i.i.d.) channels are ordered
according to their availabilities, i.e. µ1 > µ2 > . . . > µK , and
that one SU is considered. This latter can sense one channel at
each time slot and send his data if the channel is free. Let Ti(t)
be the number of times the i−th channel is sensed by the user
up to time t and ri(t) represents the reward obtained from the
i− th channel at instant t. Therefore, we define the regret (i.e.
the loss of reward due to selecting sub-optimal channels) as
follows:

R(n, β) = nµ1 − E
( n∑
t=1

µβi (t)

)
(1)

where n is the total number of iterations and µβi (t) represents
the vacancy probability of the selected channel at instant t
using the learning algorithm β. The regret can also illustrate
the performance of any MAB learning algorithm. The well-
known and widely used MAB algorithms are:

• Thompson Sampling: represents the earliest learning al-
gorithm, where the agent selects at each time slot the
channel that has the highest index θi:

θi(t) =
Si(t) + ai

Si(t) + ai + Fi(t) + bi
(2)

ai, bi are constant numbers and Si(t), Fi(t) represent
respectively the success and failure counts. If the channel
is free, then we increase Si(t): Si(t) = Si(t) + 1
otherwise Fi(t) = Ti(t) −Si(t).

• Upper Confidence Bound: the first version of this algo-
rithm is proposed in [5], his index Bi(t) contains two
variables Xi(t) and Ai(t) representing the exploitation
(or the expected of reward) and exploration factors re-
spectively:

Bi(t) = Xi(t) +Ai(t) (3)

where: Xi(t) =
1

Ti(t)

∑t
j=1 ri(j) and Ai(t) =

√
2 ln(t)
Ti(t)

• ε− greedy: in this algorithm, the user selects a random
channel if χ (i.e. a uniform random variable ∈ [0,1]) <
εt where εt = min {1, Ht } and H is a constant number,
else SU selects the channel with the highest expected of
reward Xi(t).

III. MULTI-USER LEARNING ALGORITHM

The learning algorithms presented and discussed in the
previous section are proposed in the case of a single OSA
user as first proposed in [7] with UCB. Under the multi-user
case, if each user applies a learning algorithm to find the
best channel, i.e. to select the channel that has the highest
index, then a very large number of collision could be happen
since all the users try to reach the best channel. Subsequently,
a distributed learning algorithm is required to manage the
network of multiple SUs and decrease the number of collision
among them.

A. Related Work

1) Priority Access: Many recent studies have been pro-
posed for multiple SUs to take into account the priority access
such as SLK [8], and kth−MAB [9]. However, to best of our
knowledge, all these algorithms do not consider the dynamic
access in which a dedicated channel of a leaving user can’t
be used by the other users, as shown in Fig. 1. By taken
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Fig. 1. Priority access after a user left his dedicated channel

into account the priority access, the authors of [9] proposed
a learning algorithm where each user has a prior knowledge
about his rank. In this algorithm, the time is slotted and each
slot divided into multi sub-slot depending on the user priority
ranks, i.e. the slots of SUU is divided into U sub-slots in
order to find the U − th best channel and transmit the data
via this channel. Therefore, the transmission time under a
large number of users tends towards zero for the high ranking
users, which is a major limitation of this algorithm. Based
on UCB, the authors of [8] proposed the SLK algorithm that
is an efficient algorithm for the priority access. However, the
number of users must be fixed and known for each user.

2) Random Access: In the literature, several learning al-
gorithms have been proposed for random access where the
SU chooses randomly one of the best channels. In [10], the
authors proposed the Musical chair algorithm and the Dynamic
Musical Chair (for the dynamic access where users can enter
into and out of the network). In the latter algorithms, each
user selects a random channel up to a fixed time T0 in order
to estimate the channel availabilities and the number of users,
U , in the network. After the time T0, each user should select
a random channel between {1, ..., U}.

To find the U -best channels, the authors of [11] proposed the
Multi-user ε− greedy collision Avoiding (MEGA) algorithm
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based previously on the ε − greedy algorithm proposed in
[6]. However, their algorithm suffers the same drawbacks of
the Musical chair and Dynamic Musical Chair and does not
consider the priority access.

B. All-Powerful Learning Algorithm (APL)

In our work, we are interested in the priority access where
the SUs should access the channels based on their priority
ranks. Our goal is to ensure that the U users are accessing
separately the U -best channels. Our blind approach does not
require any prior information to identify best channels. To
the best of our knowledge, existing learning algorithms [8]–
[12] for the multi-user access may suffer at least one of the
following drawbacks:

1) The number of users should be a known constant by all
users.

2) SUs should have a prior knowledge about the number
of available channels.1

3) Total number of iterations or transmission time should
be known for users.

4) The dynamic access is not allowed; under a dynamic
access, any SU can at any instant join or leave the
network.

5) A restricted dynamic access is considered, where a
SU can’t leave the network during the learning or the
exploration phases.

6) The estimation of the dynamic channel availability is not
a option; Therefore, the vacancy probability should be
fixed.

7) An access priority among SU is seldom considered in
the literature. Generally SU can select any channel.

For all these reasons, we propose in this section All-
Powerful Learning algorithm (APL) in order to tackle the
above mentioned drawbacks. Furthermore, we are interested
in the dynamic priority access where the ranked users can
join or leave the network at any time. In [8] and [9], the
authors proposed SLK (Selective learning of the K-th largest
expected rewards) and kth −MAB learning algorithms for
the priority access without considering the dynamic access.
The latter algorithms also suffer some of the above drawbacks
(mainly the 1st, 2nd and 4th drawbacks).

In the classical method of priority access, the first priority
user SU1 should sense and access the best channel, µ1, at
each time slot. While the target of the second priority user
SU2 is to access the second best channel. To reach his goal,
SU2 should sense to find the two best channels at the same
time, i.e. µ1 and µ2, in order to compute their availabilities
and then access the second best channel if available. For the

1In fact, this information is required when we use our algorithm under UCB
or ε − greedy but it is not necessary in the case of Thompson Sampling.
However, in the case of UCB the user should access each channel once in
the initialization part in order to have a prior information about the channel
availabilities. As well as, in the case of ε−greedy the constant H introduced
in section II depends on the number of channels K.

Algorithm 1: All-Powerful Learning algorithm
Input: k, ξk(t), ri(t),

1 k: indicates the k − th user or k − th best channel,
2 ξk(t): indicates a presence of collision for the k − th

user at instant t,
3 ri(t): indicates the state of the i− th channel at instant

t, ri(t) = 1 if the channel is free and 0 otherwise,
4 Initialization
5 k = 1,
6 for t = 1 to K do
7 SUk senses each channel once,
8 SUk updates his index θi(t), Bi(t) or Xi(t),
9 SUk generates a rank of the set {1, ..., k},

10 k + 1,

11 for t = K+1 to n do
12 SUk senses a channel in his index θi(t), Bi(t) or

Xi(t), according to his rank,
13 if ri(t)=1 then
14 SUk transmits his data,
15 if ξk(t)=1 then
16 SUk regenerates his rank of the set

{1, ..., k},
17 else
18 SUk keeps his previous rank,

19 else
20 SUk refrains from transmitting at instant t,

21 SUk updates his index θi(t), Bi(t) or Xi(t).

U − th SU, he should estimate the vacancy probability of all
the U first best channels at each time slot to access the U− th
best one. However, it is a costly and impractical method to
settle down each user to his dedicated channel. In the case
of APL, at each time slot the user can sense one channel
and transmit his data if available (see algorithm 1). In our
algorithm each SUk has a fixed rank, k ∈ {1, ..., U}, and his
target remains the access of the k−th best channel. The major
problem of the competitive priority access is that each user
needs to selfishly estimate the channels vacancy probability
as soon as possible in order to access his dedicated channel.
Our algorithm can solve this problem by making each user
generates a rank around his prior rank to have information
about the channel availabilities. In this case, SUk can scan the
k best channels and his target is the k− th best one. However,
if the generated rank of SUk is different to k then he accesses
a channel of the set {µ1, µ2, ..., µk−1} and he may collide
with top priority users, i.e. SU1, SU2, ..., SUk−1. After each
collision, the user can regenerate his restricted rank to access
his assign channel; Otherwise, he retains his rank. However,
if SUk regenerates his rank at every slot, there will be a large
collision number and all the transmission will be lost. Thus,
after a finite number of iterations, each user settles down to
his dedicated channel.
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IV. SIMULATIONS AND RESULTS

In this section, we evaluate the performance of our algo-
rithm for an unknown static number of users U ≤ K as well
as in the scenario of dynamic operation where the number of
users is unknown and can change as users may join or abandon
the network. We begin with the static setting where the number
of users equals 4 (U=4). We assume that the network contains
9 orthogonal channels (K=9) with the following mean reward:

µ = [0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1]

The µ vector is initially unknown to the user. After esti-
mating the availabilities of the communication channels, the
targets of the users SU1, SU2, SU3 and SU4 are the respective
access to the 4 best channels, (i.e. µ1 = 0.9, µ2 = 0.8, µ3 =
0.7 and µ4 = 0.6). If two or more users access the same
channel, a collision occurs and all the collided users receive
zero reward. The percentage of times that the user SUk
accesses successfully his dedicated channel up to n using our
algorithm APL is defined as follows:

Pk(n) =
1

n

n∑
t=1

1(if βl
APL(t)=k) (4)

where βlAPL(t) represents the channel selected at instant t
under APL using one of the learning algorithm l such as: TS,
UCB or ε − greedy. Fig. 2 depicts the Pk(n) of APL under
the three learning algorithms. This figure shows clearly that
the users converge to their dedicated channels using APL: the
first priority user SU1 converges to the best channel, followed
by SU2, SU3 and SU4 respectively. In addition, we can see a
fast converges under TS and a slow one under ε− greedy. In
Fig. 3, we display the cumulated regret of APL under three
learning algorithms where a better performance is achieved
under TS algorithm compared to UCB and ε − greedy. Fig.
3 shows that the regret of APL is logarithmic under the
three learning algorithms. Fig. 4 compares the performance of
APL, SLK [8] and Musical Chair [10]. As, SLK is based on
the UCB algorithm, it can be used just under UCB. While,
the Musical Chair is based on random access to estimate
the channels availability. However, APL can be used with
any learning algorithm. In Fig. 4, APL under TS achieves
the lower regret compared to SLK and the Musical Chair
where the regret is logarithmic. The Musical Chair produces a
constant regret after a finite number of iterations. However,
after the exploration phase, the users exploit just the U
best channels where the exploration-exploitation phases are
separated. Moreover, the priority access cannot be considered
in this algorithm and the target of user is to access a random
channel among the U best channels. After a large number
of slots, the regret of APL under TS can exceed the regret
of Musical Chair that is because our algorithm exploits the
U best channels, and at the same time surveys /explores the
states of others. However, Musical Chair exploits only the U
best channels after the exploration phase, this explain why the
regret of Musical Chair is constant after a finite time slot.
Fig. 5 shows the performance of APL and DMC (Dynamic
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Musical Chair) for the dynamic access in which the dotted
line indicates the entering and leaving of users on the network.
Figures (5a) and (5b) represent respectively the cumulated
regret and average regret of APL, where at each entering
or leaving of users, the regret increases quickly. It is worth

0 1 2 3 4 5 6 7 8 9 10

Number of slots 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

C
u

m
u

la
ti

v
e
  
R

e
g

re
t

APL under TS

APL under UCB

SLK under UCB

Musical Chair

Fig. 4. The regret of APL compared to SLK and Musical Chair

2019 27th European Signal Processing Conference (EUSIPCO)



0 0.5 1 1.5 2 2.5 3

3

10
5

0

2

4

6

8

C
u

m
u

la
ti

ve
 R

eg
re

t

a

APL under TS

APL under UCB

0 0.5 1 1.5 2 2.5 3

x10

10
5

0

0.5

1

A
ve

ra
g

e 
R

eg
re

t

b

APL under TS

APL under UCB

0 0.5 1 1.5 2 2.5 3

Number of slots 10
5

0

2

4

6

8

C
u

m
u

la
ti

ve
 R

eg
re

t

10
4

c

APL under TS

APL under UCB

Dynamic MC

0 0.5 1 1.5 2 2.5 3

Number of slots 10
5

0

0.5

1

1.5

A
ve

ra
g

e 
R

eg
re

t

d

APL under TS

APL under UCB

Dynamic MC

Fig. 5. APL and DMC for dynamic access

mentioning that, in the dynamic scenario and based on our
algorithm, the user can change his current channel for two
reasons:

• When a collision occurs, SUk should generate a random
rank of the set {1, ..., k}.

• When a PU accesses the current channel of SUk, then the
index of this channel decreases, and an index of other one
exceed this channel.

To the best of our knowledge, two algorithms in the literature
that consider the dynamic access: Dynamic Musical Chair [10]
and MEGA [11] without consider the priority access. The au-
thors of [10] shows that the Dynamic Musical Chair achieves
a better result compared to MEGA algorithm. In Figures (5c)
and (5d), we illustrate that our algorithm outperforms the
Dynamic Musical Chair and achieves a lower regret. However,
after the dynamic access interval, our algorithm achieves a
logarithmic regret despite the regret of DMC keeps growing
with time. Thus, the access under DMC algorithm is realized
in epochs where each one is composed of a learning phase
with enough rounds of random exploration to learn the U best
channels and the number of users under the dynamic access.
The length of each epoch and the learning phase are T1 and T0
respectively where these two parameters depend of the number
of channels K and the total number of iterations n.

V. CONCLUSION

In this manuscript, we investigate the problem of OSA in
the CR where a novel learning algorithm called APL has
been proposed for the scenario of multi-secondary users. This
algorithm takes into account the priority dynamic access while
only the priority access or the dynamic access are considered
in several algorithms such as SLK, kth − MAB, DMC or
MEGA. Our approach allows for an unknown and variable
number of secondary users to access the network where users
dynamically enter and leave the system. It is worth noting
that this algorithm achieves good experimental results for both
fixed and dynamic numbers of users in the network regarding

to the global regret. Moreover, APL does not require prior
information or cooperation among users as do several existing
algorithms. In the future work, we investigate the theoretical
analysis of the APL, deriving concrete regret bounds for it.
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