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Abstract—Effective and powerful methods for denoising 

electrocardiogram (ECG) signals are important for wearable 

sensors and devices. Deep Learning (DL) models have been 

used extensively in image processing and other domains with 

great successes but only very recently they have been used in 

processing ECG signals. This paper presents two DL models, 

together with a standard wavelet-based technique for denoising 

ECG signals. First, a Convolutional Neural Network (CNN) is 

depicted and applied to noisy ECG signals. It includes six 

convolutional layers, with subsequent pooling and a fully 

connected layer for regression. The second DL model is a Long 

Short-Term Memory (LSTM) model, consisting of two LSTM 

layers. A wavelet technique based on an empirical Bayesian 

method with a Cauchy prior is also applied for comparison 

with the DL models, which are trained and tested on two 

synthetic datasets and a dataset containing real ECG signals. 

The results demonstrate that while both DL models were 

capable of dealing with heavy and drifting noise, the CNN 

model was markedly superior to the LSTM model in terms of 

the Root Mean Squared (RMS) error, and the wavelet 

technique was suitable only for rejecting random noise.  

Keywords—ECG signals, Deep Learning models, 

Convolutional Neural Networks, Long Short-Term Memory, 

Filtering,  Denoising, Wavelets, Filtering 

I. INTRODUCTION  

    Electrocardiography (ECG) is a widely accepted method 

in the medical cardiology domain for analysing of cardiac 

conditions of human patients [1]. However, ECG signals are 

often affected by noise, random or deterministic and 

artefacts. These errors mix with the ECG signal generated 

by the human heart, making it hard to extract underlying 

features and interpret the ECGs. The sources of errors can 

be due to various events such as movements of the patient, 

electromagnetic noise induction of the electronic hardware 

situated nearby, or muscular contraction artefacts.  

A large number of methods to deal with noise and/or 

artefacts from ECG signals have been developed, such as 

adaptive Filters [2,3], Independent Component Analysis 

(ICA) [4], Empirical Mode Decomposition (EMD) [5], 

adaptive Fourier decomposition [6], Savitzky-Golay filter 

[7], threshold method for high frequency noise detection [8], 

Kalman filters [9], Bayesian filter framework [10], wavelet 

technique [11], clustering of morphological features [12], 

and Neural Networks [13]. Very recent attempts include 

arrhythmia heart classification using different Deep Learning 

(DL) models [14] and QRS characteristics identification 

using Support Vector Machines (SVM) [15]. These methods 

often do not take into account the problem of very high 

levels of noise present in the ECGs. Similarly, in [16] a first 

attempt to use DL based on the Long Short-Term Memory 

(LSTM) models for noise rejection in ECGs was proposed 

while in [17] auto-encoders were investigated, but they did 

not consider drifting noise, which can be several times higher 

in magnitude than the ECG signal itself. This heavy and 

drifting noise is common in wearable sensors. Therefore, in 

this paper we investigate several DL models for the removal 

and rejection of such noise in ECG signals. The paper is 

structured as follows: the DL models are presented together 

with the wavelet method in section II. In section III, the 

datasets used are described and in section IV, experimental 

results are presented. Finally, conclusions are drawn and 

directions for eventual improvements are envisaged.  

 

II. DEEP LEARNING MODELS  

The first DL model investigated is based on the 

Convolutional Neural Networks (CNNs) [18] implemented 

in MATLAB [19]. CNNs have been used before for noise 

detection in ECG [20] but not yet for ECG reconstruction. 

The present CNN model was obtained by experiment and it 

consists of six 2-Dimensional convolutional layers, each 

having 36 filters with kernel size of 19x1 per filter. The first 

layer is an input layer of size 30000x1x1 with ‘zerocenter’ 

normalization. M = 30000 is the number of samples per input 

ECG signal sequence. Each convolutional layer has neurons 

that connect to parts of the input feature or connect to the 

outputs of the previous layer.  The step size (i.e. stride) for 

the kernels is [1 1] while the padding is introduced so that 

the output is the same size as the input. Each convolutional 

layer is followed by a batch normalization layer with 36 

channels, a rectified linear unit (ReLU) layer and an average 

pooling layer with stride of 4 and pooling size of 2. The 

succession of these layers reduces the dimensionality of the 

input ECG signal sequences. Before the final regression 

output layer, the signal goes through a fully connected layer 

for regression. Table I details all 27 layers of the CNN model 

with their characteristics. Fig. 1(a) depicts the structure of the 

CNN model. It is possible to assume that the DL model will 

be able to learn suitable filters that can be used for noise 

reduction so to enable the recovery of the original ECG 

signals. An epoch goes through the entire dataset while an 

iteration is the calculation of the gradient and the network 

parameters for the mini-batch data. 
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(b) 

Fig. 1. Structure of the DL models: a) CNN model. b) LSTM model. 

 
 

The CNN model uses the Adam optimizer and with a 

batch training data size of 300. It was also noticed that the 

obtained CNN performances did not change much with 

increased batch sizes. The average Root Mean Squared 

(RMS) error over the entire testing dataset was 0.0346, with 

40 epochs of training, which took 10 minutes. For the scope 

of investigation, the CNN model was also left to iterate 

longer to 200 epochs, which took 58 minutes to reach an 

average RMS of 0.0299 over the same testing dataset. The 

CNN model was implemented in the MATLAB environment 

using the DL toolbox with an NVIDIA TITAN V GPU. 

The second DL model is based on the Long Short-Term 

Memory (LSTM) layer [21, 22] and it is also implemented in 

MATLAB. It consists of two LSTM layers with 140 hidden 

nodes per layer. The first layer is a sequence input layer with 

the dimension similar to the ECG sequence input signal of 

[30000x1]. The following layer is a Long Short-Term 

Memory (LSTM) with 140 hidden nodes (empirically 

found). The LSTM layer has neurons that connect to the 

sequence input layer and also connect to the following layer, 

which is a rectified linear unit layer with 140 inputs. The 

second LSTM layer also has 140 hidden units and it is 

connected to the previous and subsequent rectified linear 

units. Similar to the CNN model, before the final regression 

output layer, the signal goes through a fully connected layer. 

Further LSTM layers were found not improve much the 

performance. Table II shows all 7 layers of the LSTM model 

and their properties, while Fig. 1(b) depicts the structure of 

the LSTM model. The model tries to learn long-term 

dependencies in the sequence input data, while the CNN 

model tries to do the same by using kernels and a deeper 

network structure. The LSTM model also uses the Adam 

optimizer for batch training and with a batch training data 

size of 300. A constant learning rate of 0.01 and a gradient 

threshold of 0.4 were used.  For the same training dataset, the 

computational training time of the LSTM model was for 

2000 epochs was about 196 minutes and with an average 

RMS over the entire testing dataset of 0.2321, which is 

significantly higher than the RMS of 0.0346 obtained with 

the CNN model after only 40 epochs and 10 minutes running 

time (or 0.0299 after 200 epochs).  

For comparison, the last model used here for noise 

rejection is the wavelet method, which has become popular 

for decomposing signals in many applications including 

ECG noise rejection. The wavelet transformation of an input 

signal x(t) is:  

 

                 𝑊𝑎,𝑏 = ∫ 𝑥(𝑡)
1

√𝑎
𝛾∗ (

𝑡−𝑏

𝑎
) 𝑑𝑡

∞

−∞
                    (1) 

 

where t is time, Wa,b is the wavelet transformation of x(t), a 

is the dilation parameter, b is the location parameter, γ*(t) is 

the complex conjugate of the wavelet function which can be 

the Mexican-hat, Gaussian, or Daubechies wavelet function.  

 The wavelet method was based on an empirical Bayesian 

method with a Cauchy prior and implemented in MATLAB 

as wdenoise function [19], with the default ‘sym4’, wavelet, 

where 4 is the number of vanishing moments. Other options 

of the function included denoising method as universal 

threshold and noise estimate as level independent. Various 

parameters and options were also tried.  
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TABLE I.                                                                                                                    

LISTING OF THE CNN LAYERS: M = 30000 IS THE NUMBER OF SAMPLES PER 

INPUT ECG  SIGNAL 

nr name and type activations learnable 

1 Imageinput: 30000x1x1 
images with ‘zerocenter’ 

normalization 

30000x1x1 - 

2 

conv_1: 36 19x1x1 
convolutions with stride 

[1 1] and padding ‘same’ 

30000x1x36 Weights: 
19x1x1x36 

Bias: 1x1x36 

3 
batchnorm_1: Batch 

normalization with 36 

channels 

30000x1x36 Offset 1x1x36 
Scale   1x1x36 

4 relu_1: ReLu 30000x1x36 - 

5 

avgpool_1: 2x1 average 

pooling with stride [4 1] 

and padding   [0 0 0 0] 

7500x1x36 - 

6 
conv_2: 36 19x1x36 

convolutions with stride 

[1 1] and padding ‘same’ 

7500x1x36 Weights 
19x1x36x36 

Bias: 1x1x36 

7 
batchnorm_2: Batch 

normalization with 36 

channels 

7500x1x36 Offset 1x1x36 
Scale   1x1x36 

8 relu_2: ReLu 7500x1x36 - 

9 

avgpool_2: 2x1 average 

pooling with stride [4 1] 

and padding [0 0 0 0] 

1875x1x36 - 

10 

conv_3: 36 19x1x36 

convolutions with stride 

[1 1] and padding ‘same’ 

1875x1x36 Weights 

19x1x36x36 

Bias: 1x1x36 

11 
batchnorm_3: Batch 

normalization with 36 

channels 

1875x1x36 Offset  1x1x36 
Scale  1x1x36 

12 relu_3: ReLu 1875x1x36 - 

13 

avgpool_3: 2x1 average 

pooling with stride [4 1] 

and padding [0 0 0 0] 

469x1x36 - 

14 

conv_4: 36 19x1x36 

convolutions with stride 

[1 1] and padding ‘same’ 

469x1x36 Weights 

19x1x36x36 

Bias: 1x1x36 

15 

batchnorm_4: batch 

normalization with 36 

channels 

469x1x36 Offset  1x1x36 

Scale  1x1x36 

16 relu_4: ReLu 469x1x36 - 

17 

avgpool_4: 2x1 average 

pooling with stride [4 1] 

and padding [0 0 0 0] 

117x1x36 - 

18 

conv_5: 36 19x1x36 

convolutions with stride 

[1 1] and padding ‘same’ 

117x1x36 Weights 

19x1x36x36 

Bias: 1x1x36 

19 

batchnorm_5:Batch 

normalization with 36 

channels 

117x1x36 Offset 1x1x36 

Scale   1x1x36 

20 relu_5: ReLu 117x1x36 - 

21 

avgpool_5: 2x1 average 

pooling with stride [4 1] 

and padding [0 0 0 0] 

29x1x36 - 

22 

conv_6: 36 19x1x36 

convolutions with stride 

[1 1] and padding ‘same’ 

29x1x36 Weights 

19x1x36x36 

Bias:  1x1x36 

23 

batchnorm_6: Batch 

normalization with 36 

channels 

29x1x36 Offset  1x1x36 

Scale  1x1x36 

24 relu_6: ReLu 29x1x36 - 

25 

avgpool_6: 2x1 average 

pooling with stride [4 1] 
and padding [0 0 0 0] 

7x1x36 - 

26 
fc: 30000 fully 
connected layer 

1x1x30000 Weights 

30000x288 

Bias:  30000x1 

27 

Regressionoutput: mean-

squared-error with 

response  

- - 

 

TABLE II.                                                                                                                    

LISTING OF THE LSTM NEURAL NETWORK LAYERS: M = 30000 IS THE 

NUMBER OF SAMPLES PER INPUT ECG  SIGNAL 

nr name and type activation learnable state 

1 Sequenceinput: 
Sequence input with 

30000 dimensions 

30000 - - 

2 

lstm_1: LSTM with 
140 hidden units 

140 InputWeights 
560x30000 

RecurrentWei

ghts 560x140 
Bias:560x1 

Hidden
State 

140x1 

3 relu_1: ReLu 140 - - 

4 

Lstm_2: LSTM with 
140 hidden units 

140 InputWeights 
560x140 

RecurrentWei

ghts 560x140 
Bias 560x1 

Hidden
State 

140x1 

Cell 
140x1 

5 relu_2: ReLu 140 - - 

6 

Fc: 30000 fully 

connected layer 

30000 Weights 

30000x140 
Bias:30000x1 

- 

7 

Regressionoutput 

mean-squared error 
with response  

- - - 

III. DATASETS 

 

Three datasets were used. Two comprise synthetic data 

generated with the software as in [23], while a third dataset 

is a real dataset. Each dataset was divided in a training (3/4) 

and a testing dataset (1/4). The first synthetic dataset has 

6888 clean ECG signals (of duration 10 seconds) with 

30000 samples per ECG signal (sampling rate: 3000 Hz), 

which was varied between 57 to 67 heart beats per minute as 

a test case scenario. The voltage varies between 1 mV to 3 

mV. Fig. 2 shows an example of a normal synthetic ECG 

signal: P-wave associates the contraction or depolarization 

of the human heart atria, QRS-complex the contraction or 

depolarization of human heart ventricles, and T-wave the 

repolarization of human heart ventricles [1].  

 

            
Fig.2. Synthetic normal ECG signal (10 sec) without noise comprising 
30000 sample points, as the desired output of the DL models. 

 

The first dataset also includes 6888 noisy ECG signals, 

which replicate the noise conditions as found in real signals 

[24]. Specifically, the noise can be two or three times of 

magnitude of the ECG signal (Fig. 3(a)) (i.e. signal-to-noise 

ratio (SNR) = -3dB). A further strong drift, simulated by an 

autoregressive process, is added to the random noise to 861 

of the 6888 noisy ECG signals, as shown in Fig. 3(b) (SNR= 

R 

Q 

P 

T 

S 
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-7dB). The drift may correspond to various events such as 

movements of the patient or random limb movements.  

The second synthetic dataset contains 6888 clean ECG 

signals and 6888 noisy ECG signals all with both random 

noise and various levels of drifts (SNR= -7dB). Both 

datasets are available upon request.  

 

            
(a) 

 
(b) 

Fig. 3. ECG signal affected by noise: a) ECG signal affected by two times 

random noise. b) ECG signal affected by strong drifts plus random noise. 

 

    The third dataset contains real ECG signals from MIT-

BIH Arrhythmia Database [25] (e.g. record 118), which can 

be affected by various types of noise [26] (i.e. baseline 

wander, muscle artifact, electrode motion artifact). Each 

record was obtained from 2 channels at 360 samples per 

second (resampled to 3000 with interpolation) with a total 

duration of 30 minutes. The dataset is in the Physionet 

WaveForm DataBase format (WFDB) [27]. The aim is to 

reject electrode motion artifact as the noise can be four or 

five times higher than the ECG signal (Fig. 4).  

                                      

         
Fig.4. Real ECG signal affected by electrode motion artefact.  

 
 

IV. RESULTS 

For the first synthetic dataset the predictions show that 

the CNN model is able to recover the original signal with the 

RMS value of 0.0198 for the signal shown in Fig 5(b).   

For the second synthetic dataset, the LSTM predictions 

are less impressive with RMS value of 0.2201 for Fig. 6(b). 

Over the first and second testing datasets the average RMSs 

calculated with the CNN model were 0.0348 and 0.0299, 

which is 5 times lower than 0.2321 the average RMS 

obtained over the second testing dataset with the LSTM 

model. 

 

      
                                                              (a)   

       
                                                              (b) 
Fig. 5. CNN model: a) ECG signal affected by strong drifts and random 

noise, b) recovery of the original ECG signal (RMS = 0.0198). 

            

  
                                                        (a) 

  
                                                        (b) 

Fig. 6. LSTM model: a) ECG signal affected by strong drifts and random 

noise, b) recovery of the original ECG signal (RMS=0.2201). 
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 The wavelet method was able to recover the original 

ECG signal in situations where the noise is random, i.e. no 

drifting (RMS=0.1560), the RMS being about ten times 

higher than that obtained with the CNN for the noisy ECG 

signal (2nd dataset), as shown in Fig. 7.  

 

         

Fig. 7. Wavelet model: recovery of the original ECG signal (RMS=0.1560). 

 

            

Fig. 8. CNN model: recovery of the original ECG signal (RMS = 0.0220) 

from noisy ECG data affected by electrode motion artefact. 

 

The final result in Fig 8, shows that the CNN model is 

able to recover the original ECG signal (RMS=0.0220) by 

using a slightly different version of the CNN model (with 

kernel size: 9x1).  

 

V. DISCUSSION & CONCLUSIONS 

A CNN model was proposed as a regression model 
capable of rejecting very high levels of noise in the ECG 
signals, a situation, which has not been addressed before. 
The results show that the CNN model is superior to the 
LSTM model in the present settings both in quality of results 
and computational time: the CNN model took 58 minutes 
and 200 epochs to achieve better results on testing dataset 
(i.e. average RMS =0.0299) than the LSTM model, which 
took 196 minutes and 2000 epochs (i.e. RMS = 0.2321). In 
addition, the LSTM model required four times more training 
samples with strong drift plus random noise as compared to 
the CNN model. The promising performances of the DL 
models, esp. CNN, were obtained on both synthetic datasets 
with an interval of 57 to 67 heart beats per minute and real 
dataset. Further work would be to test the DL models with a 
larger heart-beat interval such as 60-120 and variability. It 
will also investigate CNNs with shorter input length to 
reduce the latency. It is also of interest to investigate on a 
wide range of real datasets to further improve the 
performances of the CNN and LSTM models.  

REFERENCES 

[1] R.Vecht, M.A.Gatzoulis, N.S.Peters, “ECG diagnosis in clinical 
practice”, Springer, 2009.  

[2] G.Lu, J-S.Brittain, P.Holland, J.Yianni, A.L.Green, “Removing ECG 
noise from surface EMG signals using adaptive filtering”, 
Neuroscience Letters, 462, 14-19, 2009. 

[3] N.V.Thakor, Y.-S.Zhu, “Applications of adaptive filtering to ECG 
analysis: noise cancellation and arrythmia detection”, IEEE Trans. 
Biomed., 38(8), 785-794, 1991. 

[4] J.Kuzilek, V.Kremen, F.Soucek, L. Lhotska, “Independent component 
analysis and decision trees for ECG holter recording de-noising”, 
PLoS One, 9(6), 2014. 

[5] J.Lee, D.D. McManus, S. Merchant, K.H. Chon, “Automatic motion 
and noise artifact detection in holter ECG data using empirical mode 
decomposition and statistical approaches”, IEEE Trans. Biomed. 
Eng., 59(6), 1499-1506, 2012.  

[6] Z. Wang, C.M. Wong, J. Nuno, F. Wan, “Muscle and electrode 
motion artifacts reduction in ECG using adaptive Fourier 
decomposition”, IEEE Interm. Conf. on Syst., Man and Cyber., 2014.  

[7] M.Chakraborty, S.Das, “Determination of signal to noise ration of 
electrocardiograms filtered by band pass and Savitzky-Golay filters”, 
Procedia Technology, 4, 830–833, 2012.  

[8] K.Le, S.Orn, O.Kleiven, “High frequency noise detection and 
handling in ECG signals”, 26th European Signal Processing 
Conference (EUSIPCO), 46-50, 2018.  

[9] D.Panigrahy, P.K.Sahu, “Extended Kalman smoother with differential 
evolution technique for denoising of ECG signal”, Australas. Phys. 
Eng. Sci. Med., 39(3), 783-795, 2016.  

[10] R.Sameni, M.Shamsollahi, C.Jutten, G.Clifford, “A nonlinear 
Bayesian filtering framework for ECG denoising”, IEEE Trans. 
Biomed. Eng. 54(12), 2172-2185, 2007. 

[11] M.Alfaouri, K.Daqrouq, “ECG signal denoising by wavelet transform 
thresholding”, Amer. J. Appl. Sci., vol.5(3), 2008.  

[12] J. Rodrigues, D. Belo, H. Gamboa, “Noise detection on ECG based on 
agglomerative clustering of morphological features”, Computers in 
Biology and Medicine, 87, 322-334, 2017. 

[13] R.Rodrigues, P.Couto, “A neural network approach to ECG 
denoising”, arXiv:1212.5217v1, 2012. 

[14] P. Rajpurkar, A.Y. Hannun, M. Haghpanahi, A.Y. Ng, “Cardiologist-
Level Arrhythmia Detection with Convolutional Neural Networks”, 
arXiv:1707.01836v1,2017. 

[15] P.Xiong, H. Wang, M. Liu, S. Zhou, Z. Hou, X. Liu, “ECG signal 
enhancement based on improved denoising auto-encoder”, 
Engineering Applications of Artificial Intelligence, 52, 194-202,2016. 

[16] S.S.Mehta, N.S Lingayat, “Detection of QRS complexes in 
electrocardiogram using support vector machine”, J. Med. Eng. 
Technol., 32(3), 206-15, 2008.  

[17] K.Antczak, “Deep recurrent neural networks for ECG signal 
denoising”, arXiv:1807.11551, 2018.  

[18] K.He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image 
recognition”, arXiv:1512.03385v1,  2015. 

[19] “MATLAB System Requirements – Release 13”, MathWorks, 2015. 

[20] J.Jennifer, G. Conner, V. Alex,“Deep Convolutional Neural Networks 
for Noise Detection in ECGs”, arXiv:1810.04122v1, 2018. 

[21] S.Hochreiter, J.Schmidhuber, “Long short-term memory”, Neural 
Computation, 9(8), 1735-1780, 1997.  

[22] C.Hu, Q. Wu, H. Li, S. Jian, N. Li, Z. Lou, “Deep learning with a 
long short-term memory networks approach for rainfall-runoff 
simulation”, Water, 10, 2018. 

[23] G.A. Kumar, S. Vegi,”Analyzing of an ECG signal mathematically by 
generating synthetic-ECG data”, IJES, 4(4), 39-44, 2015. 

[24] D.Alvydas, R.Lukocius, M.Vaitkunas, G.Nedzinskaite, “Sensors and 
signal processing methods for a wearable physiological parameters 
monitoring system”, Electronika Elektrotechnika, vol. 23(5), 2017.  

[25] G.B. Moody, RG. Mark, “The impact of the MIT-BIH Arrhythmia 
Database”, IEEE Eng in Med and Biol, 20(3), 45-50, 2001. 

[26] G.B. Moody, WE Muldrow, “A noise stress test for arrhythmia 
detectors“,  Computers in Cardiology, 11, 381-384, 1984.  

[27]  AL. Goldberger, Amaral LAN, Glass L, “PhysioBank, PhysioToolkit, 
and PhysioNet: Components of a New Research Resource of 
Complex Physiologic Signals”, Circulation, 101(23),  2000.  

2019 27th European Signal Processing Conference (EUSIPCO)


