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Abstract—Ambiguity in radar measurements is a well-studied
problem, but more recent advances in multifunction phased-array
radars motivate the development of disambiguation schemes that
operate in a minimal amount of time. To that end, a recent work
has developed a disambiguation scheme that can be optimized
to minimize dwell time, but uses waveforms that may degrade
the probability of false alarm and result in the masking of
small targets. In this paper, we develop several waveform design
methods, along with the corresponding optimization framework,
for the purpose of mitigating these issues in the case where
target velocity is small or known in advance. We show that
while some improvement is possible with no increase in dwell
time using interpulse codes, substantial improvement can be had
with only a mild increase in dwell time by adding CPI separation
or mismatched filters, and a perfect response can be obtained
by using codes with perfect periodic autocorrelations, but with
a more substantial increase in dwell time.

Index Terms—Radar measurement ambiguity, Dwell time min-
imization, Interpulse codes, Sidelobe ratios, Optimization

I. INTRODUCTION

Ambiguity in range and Doppler measurements is a funda-

mental problem for pulse-Doppler radars [1]: the unambiguous

range, Rmax, is proportional to the pulse repetition interval

(PRI), while the unambiguous velocity, vmax is inversely

proportional to the PRI. The literature on schemes that can

achieve both a large Rmax and a large vmax has been growing

for decades; see [2] for a more in-depth review. One common

approach uses multiple carefully-selected PRIs to recover the

desired data unambiguously; research in these approaches

typically focuses selecting the PRIs so as to optimize some

quantity of interest, e.g. radar visibility, as in [3]–[5]. Another

common approach exploits diverse waveforms: see e.g. [6]–

[9], where unique pulses facilitate signal processing techniques

that alleviate range ambiguity. However, little attention has

been paid to the time-efficiency of these schemes: a technique

providing significant improvement beyond a baseline may

nevertheless be impractical if the time required to execute it

is prohibitively large. A modern phased-array radar may be

tasked with multiple functions (e.g. surveillance, tracking, fire

control, etc.) [1], and so it is imperative that each task be

executed in minimal time so that all functions have sufficient

time to be completed. Moreover, for some functions, overall
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performance can be contingent on the time each task takes,

e.g. in surveillance, where better performance is obtained if

the radar can revisit each beam position more frequently.

In recent work [2], we developed a disambiguation method

that combines the multiple-PRI and diverse waveform ap-

proaches described above, paired with an optimization prob-

lem, that seeks to provide unambiguous measurements for

specified values of Rmax and vmax in minimal time, for fixed

values of the probability of false alarm and probability of

detection for a specfied target size (see Section II). Some

limitations of the scheme, identified in [2], stem from the

use of chaotic phase-coded (CPC) waveforms, which, despite

having relatively good auto- and cross-correlations on average,

can degrade the probability of false-alarm with large spurious

recurrent sidelobes and result in the masking of small targets

by the recurrent sidelobes of larger targets in multi-target

scenarios. The goal of this paper is to develop waveforms

for use in the scheme of [2] that mitigate these issues at

the expense of an increase in dwell time. Section II reviews

the scheme developed in [2], while Section III discusses

the waveform design methods. Section IV then compares

the relative performance of the methods, while Section V

concludes the paper.

II. REVIEW OF [2]

This section summarizes the relevant results from [2]; some

details are omitted here for the sake of brevity, but the

discussion can be found in full there.

Consider a monostatic radar transmitting N pulses per

coherent processing interval (CPI), for M such intervals in a

single dwell, with the PRI in the i-th CPI is denoted by ti. Each
pulse is a distinct phase-coded waveform with Nc elements

of length τc each, for a total pulse duration Ncτc, where the
phase codes are obtained from a chaotic process (specifically

a logistic map with a parameter value of 4, following [10]).

In principle, this system can achieve an unambiguous range

and velocity of Rmax and vmax in the following way. Each

pulse has a matched filter that filters all receiver data from the

moment that pulse is transmitted to 2Rmax/c > ti seconds
later, i.e. enough time for a pulse reflecting off a target at

a distance of Rmax to return. In principle, the favourable

autocorrelation properties of chaotic phase codes means that
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any target will show up in the filtered returns as a thumbtack-

like spike, while the near-zero cross correlations of different

chaotic phase codes will preclude other pulses from showing

up as false targets (see [10] for further discussion). With the

range ambigutiy gone, the PRIs can be selected to satisfy

t−1
i = fi ≥ 4vmax/λ for an unambiguous velocity of vmax

[1].1

This approach allows for a combination of positive attributes

from both the multiple-PRI and diverse waveform approaches

discussed in the previous section. With multiple PRIs, the

scheme allows for radar visibilitiy as a design parameter, while

in typical diverse waveform approaches, visibility is fixed

automatically by the pulse length and PRI. On the other hand,

the use of diverse waves decouples the range and velocity

disambiguation procedures, allowing for greater flexibility in

parameter selection. Crucially, this scheme functions for a

large set of parameter values (i.e. M,N,Nc, τc and the ti),
and so allows for the total dwell time of the scheme to be

optimized in terms of those parameters, as in (1a)-(1i).2

Equation (1a) gives the dwell time: N pulses separated by

the PRI ti for each CPI, with the final CPI required to wait
for the final pulse to return to complete the dwell. Next, (1b)

bounds τc below with the bandwidth B and the a constant δ
representing the clock speed of the computer (following [3]–

[5]), while (1c) enforces a maximum duty cycle τd,max; the

meaning of (1d) has been given previously. The function Vκ

computes the radar visibility in terms of eclipsing: if a radar is

transmitting, it cannot receive data, and so (1e) ensures that a

fraction ζ ∈ (0, 1) of the desired range is not eclipsed.3 Using
a Neyman-Pearson detector, (1f) fixes a minimum probability

of detection PD for a specified probability of false alarm PFA

within a CPI, which are related to “overall” probabilities PDO

and PFAO
by the 2-of-M binary integration rule (for M ≥

3) and a 1-of-M rule if M ≤ 2; see Table I for parameter
definitions. Finally, (1g) mitigates range migration by ensuring

the range resolution is larger enough to accomodate a target

traveling at vmax within one CPI, while (1h)-(1i) model

discrete times representable in a computer.

This optimization problem can be solved effectively with

a branch and bound method: a analytically-solvable convex

subproblem provides the lower bound, while the algorithm

branches over N and Nc. For a given N and Nc a simple

search procedure is used to find good ti and τc values.
Simulations were run to determine the efficacy of this

disambiguation scheme. While most simulations worked as

desired, two salient limitations were identified: the recurrent

sidelobes of the CPC waves are prone to spurious spikes that

can trigger false alarms and have a “volume” that increase the

1Strictly speaking, since the data is being sampled with a period of τc
(to facilitate the phase codes), the condition is τ−1

c ≥ 4vmax/λ, but it is
discussed in [2] that non-negligible recurrent lobes can still appear in the
ambiguity function at multiples of t−1

i , so we impose the condition using

t−1
i instead of τ−1

c .
2Note that (1a)-(1i) assumes a fixed value ofM . This optimization problem

is run for each candidate value of M to determine the best possible M .
3This is in constrast to [3]–[5], which incorporates both eclipsing and clutter

into the visibility metric; we consider a noise-only case here.

chances of masking smaller targets. In the next section, we

will develop methods that, at the expense of increased dwell

time, mitigate these issues substantially.

min
{ai},b,N,Nc

tD =
M∑
i=1

Nti − tM +Ncτc + 2Rmax/c (1a)

s.t. τc ≥ max{1/B, δ}, (1b)

Ncτc ≤ τd,max min
i
{ti}, (1c)

max{ti} ≤ λ

4vmax
, (1d)

Vκ(N,Nc, {ti}Mi=1) ≥ ζ, (1e)

Q

(
Q−1 (PFA)−

√
2PtG2λ2σ0κNNcτc
(4π)3R4

maxkT0FLs

)
≥ PD, (1f)

vmax max
i
{ti}N ≤ cτc

2
, (1g)

τc = bδ, ti = aiτc, ∀i ∈ {1, . . . ,M}, (1h)

ai, b, N, Nc ∈ Z
+ (1i)

III. WAVEFORM DESIGN METHODS

The main method of developing improved waveforms here

will be through the use of interpulse codes (see e.g. [9] and

Section 9.1 of [11]). Simple arguments (omitted for brevity)

show that if identical pulses are used in the scheme outlined

above, with each successive pulse multiplied by the next (com-

plex, unit magnitude) term in a given phase code, then after

matched-filtering, the n-th recurrent sidelobe is multiplied by
the n-th tap of the autocorrelation of that code. Thus, by
choosing an interpulse code with very low autocorrelation

sidelobes, the recurrent lobes of the original waveform will

be substantially reduced. Note that, as in [9] and [12], the use

of phase codes limits the focus here to range disambiguation

in cases where target velocity is close to zero or known a
priori; while this condition is limiting in practice, discussion
on more general extensions is given in Section IV.

A. Method 1: Basic Interpulse Codes

The most basic approach is to simply use the system

described in the previous section as-is, with an interpulse code

overlaid on the pulses. The advantage of this kind of approach

is that it does not require any additional dwell time to function.

The baseline, which we denote Method 0, is the use of CPC
pulses as described above, without any interpulse code. This

will be compared to Method 1.1, CPC pulses overlaid with a
P4 interpulse code [11], Method 1.2, identical P4-coded pulses
with a P4 interpulse code, and Method 1.3, P4-coded pulses
with a near-optimal biphase interpulse code obtained from

the following optimization problem using a simple algorithm

which takes the best among a large number of randomly-

selected, greedily-improved codes:

min
y

Nr∑
i=1

⎛
⎝N−i∑

j=1

y(j)y(j + i)

⎞
⎠

2

, s.t. y ∈ {−1,+1}N (2)
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This problem minimizes magnitude of the autocorrelation

of the interpulse code, y, in the taps affecting recur-

rent lobes in the unambiguous range. The number Nr =
�2Rmax/(cmin{ti})� gives the maximum number of recur-

rent lobes in the unambiguous range, and so problem (1a)-(1i)

must be solved before (2).

B. Method 2: Interpulse Codes with CPI Separation

As described by (1a), the scheme in [2] does not wait for

the pulses of one CPI to return before starting the next, i.e. the

first pulse of CPI i is transmitted only ti−1 seconds after the

beginning of the last pulse of CPI i− 1. This can cause some
degradation of the interpulse code effect: the first few pulses

from the next CPI (and the last few pulses of the previous

CPI) are integrated with the returns of the current CPI, but

don’t necessarily line up with the current CPI pulses because

each CPI has a different PRI. If, however, 2Rmax/c seconds
are allowed to pass between CPI, all pulses from targets up

to a range Rmax away will be returned, and not interfere

with the returns of adjacent CPI. The integrated data will have

improved recurrent sidelobes at the expense of the added time

due to the wait between CPI. This requires a slightly modified

optimization problem: (1a)-(1i) are still the constraints, but

tD =

M∑
i=1

((N − 1)ti +Ncτc + 2Rmax/c) (3)

is the objective function.4 This problem can then be solved

similarly to (1a)-(1i). Method 2.1 involves a P4 interpulse code
on P4-coded pulses, while Method 2.2 uses a code obtained
from (2) on P4-coded pulses.

C. Method 3: Mismatched Codes

In Method 1, the interpulse code uses a matched filter,

but further recurrent sidelobe reduction can be obtained if

a mismatched filter (MMF) is used (see Ch. 6, [11]). The

mismatched filter results in an signal-to-noise-ratio (SNR)

loss (which can be modelled in (1a)-(1i) by increasing the

value of the loss term Ls in (1f)), which in turn causes an

increase in dwell time to maintain a fixed PD and PFA. The

following convex optimization problem allows for the design

of a mismatched filter, q, for a code s that minimizes the height
of specified sidelobes in their cross-correlation [12], [13]:

min
q

qHAHΛAq (4a)

s.t. sHq = sHs (4b)

qHq ≤ αsHs (4c)

Here, A is a matrix containing shifted versions of s such that
Aq computes the cross-correlation of q and s. Then, Λ is a

diagonal matrix of weights allowing the user to specify which

taps of the cross-correlation should be minimized; by choosing

Λi,i = 1 for i = −Nr, . . . ,−1, 1, . . . , Nr and 0 otherwise,

the optimal code for minimizing the Nr recurrent lobes is

obtained. Equation (4b) prevents the trivial q = 0 solution,

4Note that when M = 1, the two optimization problems are equivalent.

while (4c) forces a maximum SNR drop of 10 log10 α dB; see
[12] and [13] for further details. Methods 3.1, 3.2, and 3.3 will
involve the use of P4-coded pulses with a P4 interpulse code

and a mismatched filter with SNR losses of 0.125, 0.25, and

0.5 dB respectively. The optimization problem is solved using

the convex optimization problem solver CVX [14], [15].

D. Method 4: Perfect Periodic Autocorrelation Codes

The final method is an adaptation of the scheme in [9].

By using codes that have a perfect periodic autocorrelation
(i.e. zero everywhere except at the mainlobe and its periodic

duplicates) as the interpulse code, the recurrent lobes can be

entirely eliminated [9]. This technique has two sources of

added dwell time. First, to avoid boundary effects ruining the

perfect period autocorrelation, two additional sequences of the

code must be sent [9]. Second, the CPI must be separated as in

Method 2. To reflect these changes, some modifications to the

optimization problem used for Method 2 must be made. First,

replace every instance of N in the problem with (b2 + 2)N1

(with b2, N1 ∈ Z
+), except in (1f), where N is replaced with

N2 ∈ Z
+. Here, N2 is used to guarantee enough energy is

put on target by adding a constraint b2N1 ≥ N2, while b2N1

is the total number of pulses integrated after processing, and

(b2 +2)N1 is the total number of pulses transmitted per CPI,

reflecting the addition of two additional sequences. Finally, the

constraint N1 ≥ 2Rmax/(cmin{ti}) is added to ensure that
the interpulse code can eliminate all recurrent lobes. These

changes do not have a drastic effect on the solution algorithm:

branching (for the branch-and-bound portion) now occurs over

N1, N2 and Nc, with the first new constraint simply restricting

the set of choices for N1 and N2, while the second new

constraint adds a constant lower bound to min{ti}, which is
already bounded below by Ncτc/τd,max. Method 4 uses a P4
code as the perfect interpulse code5 with P4-coded pulses.

IV. PERFORMANCE COMPARISON

This section examines how the different waveform de-

sign methods improve two different metrics. Let x(i), i =
1, . . . , �2Rmax/(cτc)� be the set of (noiseless) filtered and
integrated range samples, and let a target be located in cell j.
The first metric, the peak recurrent sidelobe level (PRSL),

PRSL = max
∀i�=j−Nc+1,...,j+Nc−1

{∣∣∣∣ x(i)x(j)

∣∣∣∣
}

is a proxy of how likely recurrent lobes are likely to trigger a

false alarm, while the second metric, the normalized integrated
recurrent sidelobe level (NIRSL),

NIRSL =
1

Nr

⎛
⎝j−Nc∑

i=1

(
x(i)

x(j)

)2

+

�2Rmax/(cτc)�∑
i=j+Nc

(
x(i)

x(j)

)2
⎞
⎠

1
2

,

provides a measure of the degree to which a waveform could

mask other targets with its recurrent lobes. The normalization

5Note that, up until now, the P4 code has been used for its aperiodic
autocorrelation, and is now being used for its perfect periodic autocorrelation
[11].
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TABLE I
SYSTEM PARAMETERS FOR SIMULATION

Parameter Symbol Value
Unamb. Range Rmax 23 km
Unamb. Velocity vmax 700 m/s

Overall Prob. of Det. PDO
0.9

Overall Prob. of False Alarm PFAO
10−5

Center Frequency fc 3 GHz
Bandwidth B 20 MHz

Computer Clock Time δ 10 ns

Min. Target RCS σ0 0.01 m2

Transmission Power Pt 5 kW
Antenna Gain G 30 dB

System Temperature T0 293 K
Noise Figure F 3 dB
System Losses Ls 0 dB

Maximum Duty Cycle τd,max 0.1
Nominal Visibility ζ 0.95
Visibility Fraction κ 0.99

Receiver Velocity Res. vsep = λfsep/2 1 m/s

Target Range r 3,824 m

Target RCS σ 0.01 m2

Target Velocity v 0 m/s

TABLE II
OPTIMIZATION PROBLEM OUTCOMES

Method tD (ms) M N Nc τc (ns) {ai}
0, 1 4.643 3 111 10 130 100, 104, 108
2 4.805 3 222 13 50 130, 131, 132
3.1 4.773 3 110 15 90 150, 156, 162
3.2 4.876 3 306 10 50 100, 103, 106
3.3 5.154 3 324 10 50 100, 103, 106
4 5.859 3 (7, 63) 46 50 460, 473, 486

by Nr prevents waveforms from being penalized for having

more recurrent lobes in the unambiguous range, which is due

more to the dwell time optimization problem than the wave-

form design method. Note that further consideration of peak

and integrated sidelobe levels for the waveform autocorrelation

itself are beyond the scope of this paper.

Table I shows the system parameter values, while Table

II gives the results from the optimization problem for each

method.6 Figures 1 and 2 show the PRSL and NIRSL (respec-

tively) against dwell time for the first three methods; Method

4 achieves perfect PRSL and NIRSL scores of 0 (i.e. −∞
dB) and so is omitted. Since the CPC pulses are generated by

random seeds, the results for Methods 0 and 1.1 are taken as

the average over 100 Monte Carlo trials, with the minimum

and maximum results indicated by the error bars, while all

other design methods are deterministic.

Comparing Method 0 to Method 1.3, roughly 10 dB in

PRSL and 13 dB in NIRSL of improvement is obtained “for

free” by using a good interpulse code. Method 2 can give

up to roughly 15 dB and 23 dB improvement in PRSL and

NIRSL respectively with only a 3.5% increase in dwell time,

while for a slightly larger increase in dwell time (5%), the

6For Method 4, the fourth column shows (N1, N2). Note that in practice,
a constraint Nc ≥ Nc,min = 10 is added to ensure that the autocorrelation
has sufficiently good sidelobes.

Fig. 1. The tradeoff between PRSL and dwell time.

0.25 dB MMF provides roughly an additional 25 dB PRSL

and 25 dB NIRSL. The impact of CPI separation can be seen

by comparing Methods 1.2 to 2.1, and 1.3 to 2.2. A few dB are

gained in PRSL, but nearly 10 dB in NISRL (for the latter pair)

are obtained (see discussion below). The 0.5 dB MMF barely

improves upon the 0.25 dB MMF in both PRSL and IRSL,

so with an 11% increase in dwell time over the baseline, is

not likely to be practical. For further gains (without hitting the

5.859 ms limit of Method 4), one could combine the MMF

approach with CPI separation, although this is beyond our

scope. If perfect returns are desired, then Method 4 can be

used, but at a cost of a 26% increase in dwell time.

Fig. 2. The tradeoff between NIRSL and dwell time.

Figure 3 provides an illustration of the impact of PRSL and

NIRSL improvement by superimposing the normalized range

data of three recurrent lobes (from CPI 1) of Method 1.3 on

top of that of an instantiation of Method 0. Note how the peaks

are drastically reduced (captured by the PRSL metric), making

a false alarm less likely, as is the volume occupied by recurrent

lobes (captured by the NIRSL metric), which reduces masking.

Also note how the height and breadth of the recurrent sidelobes
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increase as they get further from the target (not shown, but

located at range cell 198). This is due to the fact that the

first few pulses of the next CPI are misaligned with pulses

from the current CPI becuase of the difference in PRI, and

explains why Method 2 achieves such a low NIRSL: it does

not have pulses from adjacent CPI interfering. This should also

indicate that the results in Figures 1-2 are illustrative rather

than definitive: for different system parameters, the dwell time

optimization problem outcome (and therefore Nr) might be

different, and therefore yield slightly better or worse PRSL and

NIRSL values. Nevertheless, the simulation results combined

with a priori reasoning provide confidence that these results
are representative.

Fig. 3. Comparing the recurrent sidelobes of Method 0 and Method 1.3. The
data is normalized so that the autocorrelation mainlobe has a height of 1.

Finally, we note that the Doppler sensitivity of phase codes

in Methods 1.3, 2, and 3, render them impractical for cases

where the Doppler shift of the target is significant.7 For

Method 0 and 1.1, the CPC pulses have sidelobe behaviour

that is (qualitatively) fairly stable across Doppler shifts, which

is the property that allowed Method 0 to be used in [2];

limitations of space prevent the full ambiguity functions from

being shown here, however. Moreover, Methods 1.2 and 4

use identical pulses with a P4 interpulse code, which is more

robust to Doppler shifts [1], resulting in an otherwise-flat am-

biguity function with replications of the mainlobe at locations

determined by the interpulse code ambiguity function. In prin-

ciple, this could form the basis of a velocity-disambiguation

algorithm similar to standard “coincidence” algorithms [1],

although with the modification that the mainlobe replicas in

Doppler are not in the same range bin as the target. The

development of such a scheme, however, is left to future work.

V. CONCLUSION

Recent work on time-efficient radar measurement disam-

biguation [2] employed waveforms that had the potential to

degrade the desired probability of false alarm and mask the

7The value of vmax in Table I is the value used in the various optimization
problems, but is not the value up to which these methods are valid.

returns of smaller targets. This work introduced a number of

techniques for mitigating these issues in the case where target

velocities are small or known in advance, and showed how

to modify the optimization framework of [2] to minimize the

dwell time for each technique. It was shown that notable im-

provement could be obtained (without increasing dwell time)

by using an appropriate interpulse phase code. Further, using

CPI separation and mismatched filters for the interpulse codes

yielded additional gains, at the expense of a small increase in

dwell time (approximately 3.5% and 5% respectively). While a

perfect response could be obtained exploiting phase codes with

a perfect periodic autocorrelation, the cost of this was a 26%

increase in dwell time. Nevertheless, such an approach may

be necessary to develop a scheme capable of accomodating

large target velocities, which is the aim of future research.
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