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Abstract—Sparsity-inducing techniques have been introduced
into direction of arrival (DOA) estimation and achieved a great
success in performance. However the computational complexity
of the conventional sparsity-inducing techniques is prohibitively
high and thus prevents such methods from application. In this
paper, we propose a low-complexity DOA estimation algorithm
based on approximate message passing (AMP). Derived from the
loopy belief propagation, AMP is a fast algorithm to obtain the
posterior distribution of the signal. The proposed algorithm com-
bines the AMP with expectation maximization (EM) technique
to adaptively learn the hyper-parameters in the Gaussian priori
of the signal. Closed-form update rule of signal prior variance is
derived using fix-point method, an estimator of sources number
and an empirical update rule for noise variance are also derived.
Compared with the state-of-the-art algorithms, the proposed al-
gorithm reduces the computational complexity by several orders
of magnitude, while obtaining comparable performance of DOA
estimation. Numerical simulation demonstrates the advantages of
the proposed algorithm.

Index Terms—Direction-of-arrival estimation, approximate
massage passing, expectation maximization

I. INTRODUCTION

Direction of arrival (DOA) estimation has been intensively
studied for decades. It has found application in many areas
such as radar, sonar, navigation and communication etc..
Conventional methods, such as the sub-space based methods
[1], [2] and methods based on maximum likelihood paradigm
[3], [4] usually require moderate signal to noise ratio (SNR),
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non-coherent sources assumption and sufficient number of
snapshots, which confines their application in practice.

Recently, with the advent of compressed sensing theory [5],
[6], the sparsity-inducing techniques have been introduced into
DOA estimation and achieved a great success in improving
robustness of estimation against noise, limited number of
snapshots and correlation of signals. In its most basic form, the
targets were assumed to be relatively sparse on the many grids
defined by a over-complete dictionary matrix. One class of the
sparsity-inducing methods introduced lp−norm, p > 0 penalty
[7], [8] or the atomic norm [9] as an additional constraint on
the weight vector that was aimed to recover. Another category
of such methods [10]–[12], called sparse Bayesian learning
(SBL), approached the problem from Bayesian perspective
where a sparse prior was usually assumed. However, the com-
putational cost remained prohibitively expensive, especially
when the dimensions of dictionary matrix were large.

The approximate message passing (AMP) algorithm [13],
[14] was derived from the loopy belief propagation [15] for
bipartite graph. By introducing a message passing term into
the iterative thresholding schemes, the AMP algorithm was
reported to obtain substantial improvement of the sparsity-
undersampling trade-off [13]. In [16], the AMP was extended
to incorporate arbitrary distributions on both the input and
output of the bipartite graph model, which facilitated the
application of the algorithm in practice. Later, the authors
in [17] inserted an expectation-maximization step into the
iteration, enabling the algorithm to learn the priori. However,
their method, named EM-GAMP, was based on the Gaussian-
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Bernoulli and Gaussian-Mixture distributions as the priori.
Recently, the authors in [18] proposed using the Gaussian scale
mixture (GSM) as the priori in EM-GAMP. But their algorithm
focuses on the property of the EM-GAMP in general cases,
it did not specify the exact update rule for noise variance nor
the approach to determine the number of sources.

In this paper, we propose a novel DOA estimation method
based on the approximate message passing (AMP). In the
proposed method, the priori of the signal is assumed to be
zero-mean Gaussian distribution. The DOA estimation is then
obtained by estimating the variances in the signal priori.
Compared with traditional sparsity-exploiting method such as
least absolute shrinkage and selection operator (LASSO), the
proposed method does not require the troublesome tuning of
the trade-off parameter and was significantly faster without
losing accuracy and precision of the estimation. Detailed
steps of the algorithm are given and numerical simulation
demonstrates the advantages of the proposed method.

II. RELATION TO PRIOR WORK

The work in this paper belongs to the SBL-based opti-
mization approach to DOA estimation. The original AMP
algorithm proposed in [13] was derived from loopy belief
propagation and exhibited great advantages for its significantly
reduced computational complexity. However, it does not have
the ability to learn the prior parameters. The work done by
Vila and Schniter [17] combined the AMP with expectation
maximization (EM) technique to adaptively learn the prior
parameters. However, their work assumes the priori of signal
to be Bernoulli-Gaussian distribution or Gaussian-mixture
distribution. Recently, a novel EM-GAMP algorithm has been
proposed for the case where the prior distribution is assumed
to be GSM. However, the algorithm did not specify the exact
update rule for noise variance nor the approach to determine
the number of sources. In this paper, we proposed a novel EM-
AMP based DOA estimation method, where we use fix-point
method and empirical approach to obtain a simpler update for
the prior parameter and give the estimator for the number of
sources. Hence, the update rules of our algorithm are different
from those in [18].

III. SIGNAL MODEL

Consider a linear array with m elements uniformly spaced
by d. K independent far-field sources impinge on the array
from different angles θi, i = 1, 2, · · ·K. The received signal
y(t) at the tth moment could be written as

y(t) = Ax(t) + n(t) (1)

where A = [a(θ̄1) a(θ̄2) · · · a(θ̄n)] is the dictionary
matrix composed by the array manifold vectors

a(θi) = [1 ej
2πd cos(θi)

λ · · · ej
2π(m−1)d cos(θi)

λ ] (2)

where i = 1, 2, · · · , n and λ is the wavelength. x(t) is a
k-sparse vector whose non-zero indexes correspond to the
directions of the targets. n(t) is assumed to be Gaussian white
noise whose covariance matrix is σ0Im where Im is a m×m

unit matrix. For the brevity of statement, we will omit the
time index t in the following unless it is required. Naturally
we have k � n, therefore one typical approach is to form the
signal recovery problem as

min ‖x‖1 s.t. ‖y −Ax‖F ≤ ε (3)

where ‖·‖1 and ‖·‖F represent the l1-norm and the Frobenius
norm respectively, ε is a user-determined parameter which
should be optimized according to the noise power. The well-
known LASSO problem can be solved by convex program-
ming.

From Bayesian perspective, the above problem is equal to
the case where a Laplacian prior of the signal is assumed. In
this paper, we assume the prior of the signal x is complex
Gaussian distribution with zero mean and covariance matrix
Γ = diag(γ1 γ2 · · · γn) where γi ≥ 0, i = 1, 2, · · · , n.
Thus, the prior distribution of the signal xi can be written as

xi ∼ {
CN (0, γi) ifγi > 0
δ(0) ifγi = 0

(4)

where CN (0, γi) represents the complex Gaussian distribution
with zero mean and variance γi. Here the variance γi is
considered to be a parameter that needs to be learned from the
data and consequently the directions of targets can be obtained
accordingly.

IV. APPROXIMATE MESSAGE PASSING

In this section, we introduce the AMP algorithm to solving
the DOA estimation problem. The AMP algorithm is derived
from loopy belief propagation algorithm designed for bipartite
graph model. The loopy belief propagation algorithm is able
to produce the posterior distribution p(x|y) within a few
iterations and consequently the minimum mean-squared error
(MMSE) estimates of x and the estimates of Γ can be
obtained. The idea of the algorithm is to iteratively decompose
the vector valued estimation problem into a sequence of
scalar operations at the input and output nodes. Therefore, the
algorithm is much faster than the conventional convex pro-
gramming methods and empirical-Bayesian algorithms based
on relevance vector machine.

The steps of the AMP algorithm is listed below where (·)∗
represents the conjugate operator, index k means the kth AMP
iteration, x̂ = [x̂1 x̂2 · · · x̂n] is the estimate of x. For
brevity of statement, the detailed mathematical derivation of
the algorithm is omitted and interested reader can refer to
[16] for details. There are two scalar estimation functions
gin and gout which depends on the prior distribution p(x|Γ)
and the conditional distribution p(y|x) respectively. Readers
are referred to [16] for better understanding of these two
functions. In brief, the function gin is the posterior mean of the
signal xj , j = 1, 2, · · · , n and τ rj

∂
∂r̂gin(k, r̂j , γj , τ

r
j (k)) is the

posterior variance of the signal. Function gout and its derivative
are actually quantities that emerged during the derivation of
the algorithm.
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For our model, the scalar functions gin and gout can be
written as

gin =
r̂j(k)γj
τ rj + γj

, j = 1, 2, · · · , n

gout =
yi − p̂i(k)

σ0 + τpi
, i = 1, 2, · · · ,m

(5)

Their derivatives ∂
∂r̂gin and ∂

∂p̂gout can be written as

∂
∂r̂gin =

γj
τrj (k)+γj

, j = 1, 2, · · · , n
∂
∂p̂gout = − 1

σ0+τ
p
i
, i = 1, 2, · · · ,m (6)

The initial condition for the AMP algorithm should be
estimated from the prior distribution of the signal as

x̂j(0) =< xj >p(xj |γj)

τxj (0) =< |xj − x̂j(0)|2 >p(xj |γj)
(7)

where < · >p(xj |γj) represents the expectation taken over
p(xj |γj).

After sufficient iterations, the posterior distribution of signal
p(x|y) can be obtained by

p(xj |y) =
p(xj)N (xj ; r̂j , τ

r
j )∫

xj
p(xj)N (xj ; r̂j , τ rj )

(8)

The above algorithm can produce the MMSE estimate of the
signal x, but the number of iterations is hard to determine.
During the iteration of AMP, the parameters Γ, σ0 are assumed
to be known. The AMP algorithm is used in the E-step in
order to obtain the posterior distribution (8). With the posterior
distribution, the prior parameters can be updated in the M-step.

V. DOA ESTIMATION BY EM LEARNING

In this section, we use the EM technique to iteratively learn
the prior parameters q = [γ, σ0] where γ is a vector composed
by the diagonal elements of the matrix Γ. For our model, the
update rule of prior parameters at each iteration is

qi+1 = arg max
q

< ln p(y,x; q) >p(x|y;qi) (13)

Here the expectation in the above equation is calculated
with respect to the posterior distribution p(x|y; qi) under the
parameter hypothesis qi where the superscript (·)i means the
ith EM iteration. Since it is impractical to update all the
elements of q at once, the elements of qi need to be updated
respectively.

A. EM update for γ

In this subsection, we derive the updates for γ. Since p(y|x)
is irrelevant of γ and the priori p(x; q) can be decoupled into∏
j

p(xj ; γj), the update rule for γj can be written as

γi+1 = arg max < ln p(xj ; γj) >p(xj |y;qi) (14)

where p(xj |y; qi) can be obtained from (8) as

p(xj |y; qi) = CN (
r̂jγj

τ rj + γj
,
τ rj γj

τ rj + γj
) (15)

Approximate Message Passing
Input: the dictionary matrix A, prior paramters Γ, σ0 and received
signal y

1) Initialization: Set k = 0, set x̂j(0) and τxj (0) to some initial
values and set ŝi(−1) = 0.

2) Output linear step: For each i = 1, 2, · · · ,m, calculate the
following:

τpi (k) =
∑
j
|aij |2τxj (k)

p̂i(k) =
∑
j
aij x̂j(k)− τpi ŝi(k − 1)

ẑi(k) =
∑
j
aij x̂j

(9)

3) Output nonlinear step: For each i = 1, 2, · · · ,m, calculate the
following:

ŝi(k) = gout(k, p̂i(k), yi, τ
p
i (k))

τsi (k) = −
∂
∂p̂
gout(k, p̂i(k), yi, τ

p
i (k))

(10)

4) Input linear step: For each j = 1, 2, · · · , n, calculate the
following:

τrj (k) = [
∑
i
|aij |2τsi (k)]−1

r̂j(k) = x̂j(k) + τrj (k)
∑
i
(aij)

∗ŝi(k)
(11)

5) Input nonlinear step: For each j = 1, 2, · · · , n, calculate the
following:

x̂j(k + 1) = gin(k, r̂j(k), γj , τ
r
j (k))

τxj (k + 1) = τrj
∂
∂r̂
gin(k, r̂j , γj , τ

r
j (k))

(12)

Output: τpi , p̂i, ẑi, ŝi, τ
s
i , i = 1, 2, · · · ,m, τrj , r̂j , x̂j , τ

x
j j =

1, 2, · · · , n

Substituting (4) and (15) into (14), one could obtain that

γi+1
j =

|r̂j(t)γij/(τ rj + γij)|2

1− τ rj γij/((τ rj + γij)γ
i
j)

(16)

It can be noticed from (16) that our update rule for γ is
much simpler than the one in []. Furthermore, with (16),
one can establish a stopping criteria for the iteration as
‖γi+1 − γi‖1 ≤ ε. Here ε is a threshold that determines the
number of iterations.

B. Determine K and EM update for σ0

Another parameter that needs to be learned is the noise
power σ0. The update of σ0 also influences the optimization
of γ and hence the precision of DOA estimation. The con-
ventional EM update for σ0 tends to under-estimate the noise
variance. Thus in this paper, we adopt an empirical approach
to estimate σ0. Before jumping to the estimator of σ0, we need
to determine the number of sources K. Applying the BIC rule
[19] to the model, we can obtain the following model order
selector

K∗ = arg max
K̂

{
mT ln

(
tr ((I−P)R)

m− K̂

)
− TK̂ + κ

}
(17)

where K̂ is the model order, T is the number of available time
samples, κ = (2K̂T+1) ln(T )

2 , tr(·) is the trace of a matrix and

P = AM(AH
MAM)−1AH

M, R =
1

T
YYH (18)
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where (·)H is the conjugate transpose of a matrix, (·)−1 is
the inverse of a matrix, Y = [y(1) y(2) · · · y(T )] is a
collection of T received samples, AM is a matrix composed of
columns from A corresponding to the set of presumed target
directionsM. The setM can be obtained by choosing the K̂
directions that correspond to the first K̂ largest peaks in γ.
Once the number of sources is correctly obtained, M will be
consisted of the estimated target DOAs.

At the optimal point of q, the following condition must be
satisfied [20]

AH
M(R−ΣY)AM = 0 (19)

where ΣY is the covariance matrix. Then one can derive from
(19) the following noise variance update

(σ2)i+1 =
tr ((I−P)R)

m−K
(20)

C. EM initialization

Although there are no certain constraints about the initial
values of Γ and σ0, prior information about these parameters,
should it exists, can be utilized to form preliminary estimates.
A good initial estimation of these prior parameters could
accelerate the speed of convergence. Since the variances of
noise are assumed to be the same across different channels.
The following equation can be used to obtain a fair initial
estimate of the noise power [18].

σ̂0 =
‖y‖22

(SNR+ 1)m
(21)

where ‖ · ‖2 is the l2-norm and SNR is an initial estimate of
SNR. If the signal power of different sources are assumed to
be the same, the following equation can be used to obtain the
initial estimate of the signal power.

γi = γ̂0 =
‖y‖22 −mσ̂0

tr(AHA)
, i = 1, 2, · · · , n (22)

VI. NUMERICAL SIMULATION

In this section we report the results of a numerical study
that investigate the performance of our proposed algorithm
under noisy settings. Consider a linear array with 16 elements
uniformly spaced by half of wavelength. Two independent
sources impinge on the array from θ1 = 20◦ and θ2 =
30◦ respectively. The sparsity-inducing methods sample the
[−45◦ 45◦] space with 1◦ interval to form the over-complete
dictionary matrix A. The signal-to-noise (SNR) ratio of the
two received signals are assumed to be the same. Among the
existing methods, the LASSO and Tipping’s relevance vector
machine (RVM) [21] are used as performance comparison with
the proposed algorithm. We used CVX to solve the convex
programming posed by LASSO and the priori of the hyper-
parameters in the RVM were chosen to be non-informative.
In our simulation, we saved the trouble of tuning the weight
parameter in LASSO, instead we used an empirical value in
each case. In our simulation, the DOA estimation is conducted
with only one snapshot. Therefore, we did not use conventional
subspace-based methods as comparison.

The reconstructed spatial spectral are plotted in Fig. 1. It
can be seen that all the three sparsity recovery algorithms find
two peaks at the true location of the targets. However, the
proposed algorithm has wider peak width. This is because
that the proposed algorithm is an approximate approach to
implement the EM iteration in sparse Bayesian learning.

The root-mean-squared error (RMSE) of DOA estimates of
different algorithms are compared in Fig. 2 in the case of
different SNR. The RMSE of DOA estimates are calculated
by 100 Monte Carlo simulations. It can be seen that as the
SNR increases, the RMSE of DOA estimates of all these al-
gorithms decrease. The performance of the proposed algorithm
is comparable to the LASSO in all cases and slightly better
than the RVM. However as it will be seen in the following,
the computational complexity of the proposed algorithm is
significantly less than the other two methods. Compared with
the conventional SBL methods, the proposed algorithm also
adopts the EM learning technique, however, the proposed
algorithm takes an approximate but much faster way to obtain
the posterior distribution of the signal.

In another scenario, the targets are incident from θ1 = 10◦

and θ2 = 20◦ respectively. The rest of condition remains the
same as the first scenario. The RMSE of DOA estimates versus
SNR is plotted in Fig. 3. It can be seen that the RMSE of
the proposed algorithm is similar to the other two algorithms.
Compared with Fig. 2, one can find that as the targets approach
the boresight of the array, the RMSE of DOA estimation is
lower.

To evaluate the computational complexity of different al-
gorithms, we conduct 50 Monte Carlo simulations and record
the CPU time spent by each algorithm for DOA estimation.
The results are shown in Table I. It can be seen that the
proposed algorithm spends significantly less time than the
LASSO and the RVM. Thus, the proposed algorithm reduces
the computational cost of DOA estimation by several orders
of magnitude, which is extremely helpful for application in
practical radar system.

Fig. 1. Reconstructed spectra of different algorithms

VII. CONCLUSION

In this paper, we propose a novel low-complexity optimiza-
tion algorithm for DOA estimation. The AMP for complex
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Fig. 2. DOA RMSE versus SNR in scenario 1 (θ1 = 20◦ and θ2 = 30◦ )

Fig. 3. DOA RMSE versus SNR in scenario 2 (θ1 = 10◦ and θ2 = 20◦)

TABLE I
CPU TIME SPENT BY DIFFERENT ALGORITHMS (S)

SNR(dB) 0 2 4 6 8
Proposed Algorithm 0.0102 0.0090 0.0101 0.0115 0.0149

RVM 12.5559 12.4790 11.9380 11.7604 10.3909
LASSO 0.9793 1.0027 0.9898 0.9924 0.9815

Gaussian priori is developed to obtain the posterior distribution
of signal, which is then used to estimate the DOA of target
via the EM technique. Closed-form update rules are derived
using fix-point method. Numerical simulation shows that the
proposed algorithm can reduce the computational complexity
by serval orders of magnitude and also achieves comparable
performance of DOA estimation. The complexity benefits of
the proposed algorithm are particularly attractive for large-
scale antenna systems.
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