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Abstract—In many engineering applications, noise often ex-
hibits strongly impulsive characteristics, while the conventional
adaptive filtering (AF) algorithms are less robust to the impulsive
noise. The AF algorithms based on maximum correntropy crite-
rion (MCC) have been devised to effectively enhance the adaptive
estimation performance in impulsive noise environments. In this
paper, a robust group-sparse proportionate affine projection
(RGS-PAP) algorithm based on MCC is proposed for estimating
group-sparse channels which often occur in network echo paths
and satellite communications channels. The constructed RGS-
PAP algorithm is derived via exerting a mixed l2,1 norm
constraint of AF weights into the updating equation of the
affine projection algorithm with MCC to utilize the group-
sparse characteristics. The developed RGS-PAP algorithm is
analyzed by setting up various simulation experiments to verify
its robustness and effectiveness. Simulation results indicate that
the proposed RGS-PAP algorithm provides faster convergence
and lower estimation bias compared with other algorithms under
various input signals in impulse noise environments.

Index Terms—Channel estimation, maximum correntropy cri-
terion, PAP algorithm, mixed l2,1 norm, impulse noise environ-
ments

I. INTRODUCTION

Adaptive filtering (AF) has found a wide range of appli-
cations in radar and wireless communication systems, and it
has been proved to be effective for system identifications [1]–
[3]. In the wireless transmission area, AF has been used for
channel estimation which is a vital part in modern commu-
nication systems [4]–[6]. Thus, it is important to study the
adaptive channel estimation for improving the communication
performance [4]–[6]. In addition, AF can accurately estimate
the channels via acting as a channel estimator.

The most representative AF algorithm is the least mean
square (LMS), which is realized by solving the Wiener-Hopf
equation based on the steepest descent method [6]. The LMS
and its normalized form (normalized LMS, NLMS) have
been extensively studied owing to their simple implementation
and stable performance [7]. As an extension of the NLMS
algorithm, the affine projection (AP) algorithm reuses the
input signal, which significantly reduces the gradient noise
[8]. Although the AP scheme enhances the convergence in

comparison with the NLMS algorithm for colored noise [9],
it is also more complicated. In all these algorithms, the
mean square error (MSE) has been considered at the cost
function to achieve good estimation performance when the
noise obeys the Gaussian distribution. However, in many
engineering environments, the noise often is impulse-like non-
Gaussian. In these cases, both AP and LMS variants might
suffer from performance degradation. To address this problem,
the maximum correntropy criterion (MCC) has been presented
to develop robust AF algorithms [10], [14].

In practice, many unknown channels to be estimated have
sparse characteristics, like the channels in underwater and
satellite communication systems [15], [16]. However, classical
AF algorithms, such as LMS, AP and MCC algorithms [1],
[10]–[13], are unable to take the advantage of the channel
sparseness to improve the estimation performance [17]. Re-
cently, the proportionate scheme has been proposed for the
NLMS, denoted as PNLMS, that utilizes channel sparseness
to arrive at a step-size varying over the AF taps [18]. Then,
several improved proportionate-type algorithms have been pro-
posed [19]. Additionally, a series of sparse AF algorithms have
been presented from the motivation of the compressed sensing
theory, such as zero-attracting (ZA) LMS (ZA-LMS) and
its reweighted form (RZA-LMS) [20]–[22]. These algorithms
cannot effectively handle the group-sparse channels, where
active coefficients of the channel impulse response (CIR) are
aggregated into one-group (such as network echo channels)
and multi-group (like satellite communication channels) [23],
[24]. To utilize the group-sparsity properties, several group-
sparse AF algorithms have been proposed [16], [25]–[29].
The block-sparse LMS (BS-LMS) algorithm [25] incorporates
the mixed l2,0-norm into the cost function; it has a superior
performance [25] compared to the LMS and its ZA forms. The
block-sparse PNLMS (BS-PNLMS) algorithm in [26] employs
the mixed l2,1-norm to modify the cost function of the PNLMS
for exploiting the group -sparsity [26].

In this paper, we use the MCC criterion as the cost function
to improve the AP algorithm and derive a robust group-sparse
proportionate AP (PAP) (RGS-PAP) algorithm for dealing
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with the group-sparse channels in impulse noise environments.
The proposed RGS-PAP algorithm is investigated and verified
in symmetrical alpha-stable (SαS) distribution noise environ-
ment. Experimental results show that the proposed RGS-PAP
algorithm converges faster and achieves a lower steady-state
error in α-stable impulsive noise environments in comparison
with other MCC, NLMS and their proportionate versions
algorithms.

II. REVIEW OF MCC AND PAP ALGORITHMS

A. MCC algorithm

In the identification framework, it is as-
sumed that the input signal is x(n) =
[x(n), x(n− 1), x(n− 2), · · · , x(n− L+ 1)]

T , and the
CIR is h(n) = [h0(n), h1(n), · · · , hL−1(n)]T . In this case, n
is the time index and L is the length of the filter. Then, the
reference signal d(n) is

d(n) = hT (n)x(n) + r(n), (1)

where r(n) is the measurement noise. The estimated error is
given by

e(n) = d(n)− y(n) = d(n)− ĥT (n− 1)x(n), (2)

where y(n) is the AF output and ĥ(n) is the CIR estimate.
The MCC algorithm is implemented by using the stochastic
gradient method to find the maximum value of the correntropy
between d(n) and y(n). The updating equation of the basic
MCC algorithm is given by [10]

ĥ(n) = ĥ(n− 1) + µMCC exp

(
−e

2(n)

2σ2

)
e(n)x(n), (3)

in which µMCC represents the overall step size and σ denotes
the kernel width.

B. PAP algorithm

The AP algorithm reuses the information from previous
instants to speed up the convergence, particularly when the
input signal is colored. The input signal of the AP algorithm
is expressed as an L× P matrix

X(n) = [x(n),x(n− 1), · · · ,x(n− P + 1)], (4)

where P denotes the projection order. The
reference signal in the AP algorithm is d(n) =
[d(n), d(n− 1), · · · , d(n− P + 1)]T. Then, the output
is

Y(n) = XT (n)ĥ(n− 1) (5)

with the estimated error

e(n) = d(n)−Y(n). (6)

Inspired by the famed PNLMS [18], the proportionate-update
method has been introduced into the AP to construct the PAP
algorithm whose updating equation is

ĥ(n) = ĥ(n− 1)+

µPAPG(n− 1)X(n)
[
XT (n)G(n− 1)X(n) + δIP

]−1
e(n)

(7)

where µPAP acts as the total the step size, δ > 0 represents a
small constant, and IP is a P ×P identity matrix. G(n−1) is
the step-size control matrix, which is expressed as [18], [19]

G(n− 1) = diag {g0(n− 1), g1(n− 1), . . . , gL−1(n− 1)}
(8)

where

gl(n− 1) =
ϕl(n− 1)

L−1∑
i=0

ϕi(n− 1)

, 0 ≤ l ≤ L− 1, (9)

and

ϕl = max
{
pmax

{
q,
∣∣∣ĥ0∣∣∣ , ∣∣∣ĥ1∣∣∣ , · · · , ∣∣∣ĥL−1∣∣∣} ,

∣∣∣ĥl∣∣∣} ,
(10)

where the parameters p and q are used to prevent the update
from stalling [18].

III. THE PROPOSED RGS-PAP ALGORITHM

The PAP algorithm achieves fast convergence in Gaussian
noise environments, but the performance might be degraded
under the impulsive noise. To give a resistance to the impulsive
noise and make full use of the group-sparsity of the channel,
we propose the RGS-PAP algorithm which is developed exert-
ing the mixed l2,1-norm into the cost function of the AP-based
MCC. According to the basis pursuit approach (BPA) [30], the
proposed RGS-PAP aims to solve the following problem

min
h′(n)

‖h′(n)‖2,1,

subject to e′(n) =

[
1− µ exp

(
−e(n) · e(n)

2σ2

)]
· e(n),

(11)
where e′(n) = d(n)−XT (n)h′(n), h′(n) is the correctiveness
component [30], and e(n) · e(n) is the Hadamard product.
According to the Lagrange multiplier method, we obtain

J(n) = ‖h′(n)‖2,1
+λ

(
d(n)−XT (n)h′(n)− [1− µ exp(−e(n)·e(n)

2σ2 )] · e(n)
)
,

(12)
where λ = [λ0, λ1, · · · , λP−1] and

‖h′(n)‖2,1 =

∥∥∥∥∥∥∥∥∥


∥∥h′[1](n)∥∥2∥∥h′[2](n)∥∥2

...∥∥h′[K](n)
∥∥
2


∥∥∥∥∥∥∥∥∥
1

=
K∑
i=1

∥∥h′[i](n)∥∥2,
(13)

where K = L/B, and B is the size of a block. Then, let

∂J(n)

∂h′(n)
= 0,

∂J(n)

∂λ
= 0. (14)

We obtain

h′(n) = K (n)X(n)λT ,

d(n) = XT (n)h′(n) + [1− µ exp(−e(n) · e(n)
2σ2

)] · e(n),
(15)
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K(n) is a new step-size control matrix which will be given
next. Solving the equation in (15) results in

h′(n) = K (n)X(n)
[
XT (n)K (n)X(n)

]−1
·
[
d(n)− [1− µ exp(−e(n) · e(n)

2σ2
)] · e(n)

]
(16)

Observing equation (16), we found that it is difficult to get a
solution of the equation (16) [30], and then, we approximate
the K(n) by K(n− 1), so that (15) can be rewritten as

h′(n) = K (n− 1)X(n)
[
XT (n)K (n− 1)X(n)

]−1
·
[
d(n)− [1− µ exp(−e(n) · e(n)

2σ2
)] · e(n)

]
.

(17)
Based on the BPA [30], the updating equation of the devised
RGS-PAP algorithm is given by

ĥ(n) = R (n) ĥ(n− 1) + h′(n), (18)

where R(n) is defined as

R (n)=I−K (n− 1)X(n)
[
XT (n)K (n− 1)X(n)

]−1
XT (n),

(19)
in which I is an L× L identity matrix. From equations (17),
(18) and (19), we can obtain the final updating equation of the
RGS-PAP algorithm:

ĥ(n) = ĥ(n− 1) + µK (n− 1)X(n)

·
[
XT (n)K (n− 1)X(n) + δI

]−1
exp(−e(n) · e(n)

2σ2
) · e(n),

(20)
in which δ > 0 is a small constant. The step-size control
matrix K (n− 1) is given by

K (n− 1) =
diag {m1 (n− 1)1B ,m2 (n− 1)1B , · · · ,mK (n− 1)1B} ,

(21)
where

mk(n− 1) =
ψk(n− 1)
K∑
i=1

ψi(n− 1)

, 1 ≤ k ≤ K,

ψk(n− 1) =

max
{
pmax

{
q,
∥∥∥ĥ[1]

∥∥∥
2
,
∥∥∥ĥ[2]

∥∥∥
2
, · · · ,

∥∥∥ĥ[K]

∥∥∥
2

}
,
∥∥∥ĥ[k]

∥∥∥
2

}
,

(22)
and 1B is a B-length row vector with all ones.

IV. SIMULATION RESULTS

In this section, simulation experiments are constructed to
analyze the performance of the RGS-PAP algorithm in the
context of identification scenarios. Since the SαS distribution
(VSαS = (α, 0, γ, 0)) can be modeled to create the non-
Gaussian phenomenon which is ubiquitous in practice, we
choose it to implement the impulsive noise. The signal-to-
noise ratio (SNR), defined by SNR = 10 log10

δ2x
δ2r

, is set to be
20 dB in the following experiments. Herein, δ2x is the power
of the input signal, while δ2r is the power of the noise obtained
from VSαS. Two group-sparse channels of length L=1024,
one of which is the one-group sparse channel with active

coefficients within taps [257,272], and the other is a two-group
sparse channel with active coefficients within taps [257,272]
and [769,784], are considered to evaluate the developed RGS-
PAP algorithm. In all simulation experiments, α = 1.4 and
γ = 0.2 are used to construct the impulsive noise. The other
parameters are σ = 0.9, δAP = δRZA−AP = 0.01 and
δRGS−PAP = δ = δPNMCC = 1

LδAP [31]. Two kind of
input signals, namely, white Gaussian and colored signals,
are employed to investigate the performance of the RGS-
PAP algorithm. The colored signal is obtained from the white
Gaussian signal by filtering through a first-order system with
a pole at 0.8. The normalized misalignment (NM) is used to
evaluate the performance of all algorithms, which is given by

10 lg(
∥∥∥h− ĥ

∥∥∥2
2
/ ‖h‖22).

A. Performance with different size B of CIR blocks

The NM is investigated for different B with the colored
input and the two-group channel with µ = 0.01, as shown
in Fig.1. It can be seen that the best performance is achieved
when B=16 is used for the two-group channel.
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Fig. 1: Effects of B on the RGS-PAP algorithm.

B. Performance with different input signals

In Fig. 2 to Fig. 5, the performance of the RGS-PAP
algorithm is further studied and compared with those of the
AP, RZA-AP, PAP, MCC, RZA-MCC and PNMCC algorithms.
In these experiments, µAP = 0.02, µRZA−AP = 0.06,
µPAP = 0.01, µMCC = 0.0004, µRZA−MCC = 0.006,
µPAP = 0.115 and µRGS−PAP = 0.01 are used. The block
size B in the RGS-PAP algorithm is set to B = 16, for which
the algorithm provides the best performance. It is clear that the
proposed RGS-PAP algorithm achieves the fastest convergence
and lowest steady-state NM for the colored input. In Fig. 6,
the tracking performance of the algorithms is investigated
when the one group-sparse channel is used for first 150,000
iteration and the two group-sparse channel is considered for
the following 150,000 iterations, and the other parameters
remain unchanged. It is seen that the proposed RGS-PAP
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Fig. 2: Performance of different AF algorithms with one-group
channel. Input signal: white Gaussian input signal.

0 2 4 6 8 10

Iterations

-40

-30

-20

-10

0

N
o

rm
al

iz
ed

 M
is

al
ig

n
m

en
t 

(d
B

)

AP

RZA-AP

PAP

MCC

RZA-MCC

PNMCC

RGS-PAP

10
4

×

Fig. 3: Performance of different AF algorithms with two-group
channel. Input signal: white Gaussian input signal.

algorithm provides the faster convergence and lowest NM.

C. Effects of SNR on the RGS-PAP algorithm

Fig.7 shows the steady-state NM performance against SNR
for the colored input and the two-group channel. Herein,
µAP = 0.035, µRZA−AP = 0.055, µPAP = 0.01, µMCC =
0.0008, µRZA−MCC = 0.009, µPAP = 0.25 and µRGS−PAP =
0.01 are selected and the other parameters are the same as in
the previous experiment. Simulation results indicate that the
performance of the proposed RGS-PAP algorithm is superior
to those of the other algorithms.

V. CONCLUSION

In this paper, aiming at the problem that the MSE criterion
is not suitable for impulsive noise environments, we use
the MCC to modify the cost function of the AP algorithm,
and then incorporate a mixed-norm into the modified cost
function to exploit the group-sparse structure of the channel.
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Fig. 4: Performance of different AF algorithms with one-group
channel. Input signal: colored input signal.
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Fig. 5: Performance of different AF algorithms with two-group
channel. Input signal: colored input signal.
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Fig. 6: Tracking performance of the algorithms.
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Fig. 7: Effect of SNR on the steady-state NM.

The developed RGS-PAP algorithm is investigated in various
simulation experiments. The experimental results show that
the proposed RGS-PAP algorithm has a faster convergence
and smaller NM in α−stable noise environments.
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