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Abstract—Efficient usage of heterogeneous computing archi-
tectures requires distribution of the workload to available pro-
cessing elements. Traditionally, this mapping is done based on
information acquired from application profiling. To reduce the
high amount of manual work related to mapping, statistical
application and architecture modeling can be applied for au-
tomating mapping exploration. Application modeling has been
studied extensively, whereas architecture modeling has received
less attention. Originally developed for signal processing systems,
Linear System Level Architecture (LSLA) is the first architecture
modeling approach that clearly distinguishes the underlying
computation hardware from software. Up to now, LSLA has
covered the modeling of multicore CPUs. This work proposes
extending the LSLA model with GPU support, by including the
notion of parallelism. The proposed GPU modeling extension is
evaluated by performance estimation of three signal processing
applications with various workload distributions on a desktop
GPU, and a mobile GPU. The measured average fidelity of the
proposed model is 93%.

Index Terms—modeling, architecture, design space exploration,
signal processing systems

I. INTRODUCTION

Heterogeneous computing platforms that contain GPUs
and DSPs alongside general-purpose processors, have become
mainstream platforms for many signal processing applications,
such as image, video and audio processing. One of the
design decisions that should be made in the early stage of
programming such systems is the mapping of the application
to the platform i.e. workload consideration for processing
elements. Unfortunately, the exploration of mapping alter-
natives is nowadays still mostly performed manually, which
is a work-intensive and time consuming task. An approach
that considerably reduces the effort is building models of
the target platform and the application and exploiting them
with automatic techniques or tools. With a suitable modeling
approach combined with design space exploration, the effi-
ciency of hundreds or thousands of mapping alternatives can
be approximated within seconds.

In statistical system modeling, the application and the ar-
chitecture are often considered together. Originally introduced

for modeling of signal processing systems [1], Linear System
Level Architecture (LSLA) [2], however, is the first Model
of Architecture (MoA) that clearly separates the underlying
architecture from the software running on top of it. LSLA
specifically models the architecture and distinguishes the con-
cepts of Model of Computation (MoC) from the MoA. The
MoA and MoC separation reduces the modeling effort by
formulating the system modeling as mapping of MoC activity
to the MoA, so that the MoA and the MoC can be treated
independently when needed. In LSLA it is possible to map
different types of MoC to the LSLA, such as Synchronous
Data Flow (SDF) [3] that is especially popular in signal
processing.

In LSLA, an application described by a MoC is mapped
to a processing architecture modeled by the LSLA MoA,
and by considering the activity of the application, a cost
function is computed for each processing element in the
platform. For estimating the performance of various mapping
alternatives, the cost functions of the processing elements
are summed while varying the mapping parameters. In the
original LSLA work, Pelcat et al. [2] have modeled the energy
consumption of the Odroid XU3 platform with a graph. In
this particular case, eight processing elements interconnected
by three communication nodes model the asymmetric eight-
core CPU of the Odroid platform. LSLA provides a model for
parallel programing for CPU cores, while most contemporary
platforms include also a GPU, which motivates the proposed
work.

The contributions of this work are:
• An extension, called LSLAG, of LSLA is presented for

covering GPU units. The proposed GPU extension to the
model is linear, similar to the original LSLA that only
covers CPU cores.

• For experimental evaluation of the proposed model, three
applications are implemented in OpenCL and are exe-
cuted on two different GPU-equipped platforms. Based
on these experiments, the average fidelity of the model
is 93%, which is similar to the original LSLA model
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proposed for the CPU cores of the same platform.
This paper is structured as follows: Section 2 introduces

related work and provides a comparison to the proposed work.
Section 3 introduces the MoA concept. Section 4 explains the
proposed LSLA extension. Section 5 explains the parameters.
Section 6 elaborates the performed experiments. Finally, Sec-
tion 7 explains the conclusions and outlines the future work.

II. RELATED WORKS

There are different methodologies in performance modeling
studies. One of them, which provides a general model is the
statistical analysis method. For example, Moren, et al. [4]
present a statistical approach for work load scheduling on
heterogeneous platforms consisting of CPU and GPU. They
have modified the OpenCL API code for dynamic code feature
collection which is used for performance prediction. In model-
ing methods, it is common to use a graph to present a software
or a hardware system, or a system of systems. These methods
are divided into two different categories: data flow graphs and
non data flow graphs. In a data flow graph, a vertex is used
to model a run-to-completion block of computation called an
actor. Edges are used to model data token communications
between actors, realized by FIFO queues (First In First Out).
In addition, weights on FIFOs, called delays, are used to
represent initial data present on edges. The execution of a
data flow actor is called firing and is triggered when an actor
has sufficient data on each input edge. Table I lists modeling
approaches and the graph semantics used in related works.

SDF (Synchronous Data Flow) [3] is a well-known static
MoC. In SDF, a system is modeled with a data flow graph
where the firing rules specify the constant token consumption
and production rates for all actors. These constant rates
introduce limitations in terms of algorithmic behavior repre-
sentation.

CFDF (Core Functional Data Flow) [5] is a form of EIDF
(Enable Invoke Data Flow) [6] where a limited set of modes
influence token consumptions and productions. CFDF limits
mode transitions to only one alternative, making the model
deterministic.

BSP (Bulk Synchronous Parallel) [7], unlike SDF or CFDF
is a system modeling method, and it has its own graph
implementation. In BSP, there are processing units with local
memories connected over a router. Processing elements access
each other’s memories by remote access messages.

DAL (Distributed Application Layer) [8] has a dynamic
mapping methodology. It employs Kahn process networks to
explore application mappings and a finite state machine to
represent execution scenarios. Multiple scenarios are precom-
puted at design-time and the suitable one is selected at run-
time.

Bezati et al. [9] present a data flow modeling method ac-
cording to the CAL language [10]. Their method has six steps.
First, two different models for application and architecture
are designed. Second, simulation and profiling results are
collected. Third, the application is mapped to the architecture.
Fourth, C++ and HDL codes are generated from CAL. Fifth,

the code is compiled and synthesized. Finally, compiled code
is executed.

LSLA [2] is a MoA, separate from the MoC. The LSLA
MoA includes Processing Elements (PE) and Communication
Nodes (CN). PEs and CNs of the LSLA MoA has cost
functions including parameters that may be retrieved from
representative platform benchmarking. In that case, the cal-
culated cost functions are obtained from measured application
executions and the cost function parameters can be used to
predict system efficiency for a set of comparable applications.

The proposed work i.e. LSLAG provides a system modeling
approach that as an extension to LSLA has the benefit of
reduced modeling effort due to its re-usability. In addition,
GPU coverage of LSLAG provides more complete coverage
of modern heterogeneous platforms.

TABLE I
MODELING APPROACHES

Method Target Graph
SDF Application Dataflow

CFDF Application Dataflow
BSP System Non Dataflow
DAL System Non Dataflow
[9] System Dataflow

LSLA Architecture Non Dataflow
LSLAG Architecture Non Dataflow

III. MODELS OF ARCHITECTURE

The MoA concept [2] is used to distinguish the processing
architecture from the MoC, which should only address appli-
cations. A MoA is defined as a graph that can be used for
reproducible execution cost (time, energy, etc.) calculations.
A MoA is designed for each specific processing architecture
and it covers the processing elements and their interconnect.

Each element in the MoA graph has a cost function whose
parameters can be estimated statistically according to mea-
surement results. The calculated parameter values depend on
the application and the application’s configuration.

A. Linear System Level Architecture

LSLA is a specific type of MoA that uses linear cost
functions for each MoA graph element. The total cost of the
modeled platform is calculated according to the Equation 1,
which depicts the total cost of application activity A on the
LSLA graph P . In this equation, the total cost is equal to
the sum of the processing cost, and of the communication
cost, λ being a scaling coefficient between processing and
communication cost units. Tp depicts set of all mapped
tokens to the processing elements and Tc shows set of all
mapped tokens to the communication nodes. The activity of
the mapped MoC is calculated as tokens, consisting of quanta,
resulting in an affine cost model per communication and per
processing. The quanta are an application-independent unit of
execution cost.
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Fig. 1. Mapping of the application to the architecture model.

cost(A,P ) =
∑
t∈Tp

cost(t,map(t)) + λ
∑
t∈Tc

cost(t,map(t))

(1)
In LSLA, the application and its activity (i.e. the pressure it

puts on hardware) are mapped as activity tokens to the LSLA
model of the platform. Activity of the application includes
processing tokens and communication tokens. These tokens are
mapped to their associated elements in the platform model:
processing tokens are mapped to processing elements and
communication tokens are mapped to interconnection nodes
that are used to transfer data between PEs.

IV. LSLAG: THE PROPOSED EXTENSION TO LSLA

The proposed extension to LSLA of this work covers the
GPU that can be present in a heterogeneous platform. Figure 1
shows an LSLAG graph that includes a CPU core PE1, the
GPU, and the interconnection CN between the CPU core and
the GPU. PE1 is assumed to act as the host processor that
communicates with the GPU. This simple LSLAG model has
three elements including two processing elements and one
communication node. Each element has its own cost function
(presented beneath the nodes) that has two variables named γ
and S, as well as two linear parameters α and β whose values
are estimated for modeling purposes. The presented LSLAG
is used to model the execution time of the platform, thus time
samples are used in parameter calculations. As presented in
Equation 1, the total cost is a sum of all cost elements, i.e.
the execution time of the GPU (tk), the execution time of the
host processor (t1) and the execution time of the interconnect
(tc). The hypothesis of Equation 2 is justified by consideration
that (tk), (t1) and (tc) do not overlap in time, i.e. the kernels
of the GPU application are managed by the host device, then
executed by the GPU at separate time intervals.

tw = tk + t1 + tc (2)

tk(γ, S) = (αg/γ + βg)× S (3)

t1(γ, S) = (α1/γ + β1)× S (4)

tc(γ, S) = (αc/γ + βc)× S (5)

In these equations γ and S are variables, where γ is the
parallelism factor, and S is the input data quantity. As it
can be seen, increasing the parallelism factor γ decreases
the total execution cost asymptotically. Conventional LSLA
does not deal with parallelism, which limits its use to CPU
cores. LSLAG adds the parallelism factor γ that enables
including parallel processing elements. For each GPU-related
MoA graph entity (i.e., the GPU itself, the host PE and the
interconnect) there are separate parameters α and β, where α
can be regarded as the reciprocal of slope, and β as intercept.
In designing the model for the factors t1, tc, and tk, simplicity
was one of the driving motivations. To this end, t1, tc and tk
all have identical equations, and the model fitting will make
the parameters settle to values that reflect the real trends of
the factors. The next section describes the proposed approach
of estimating each α and β.

V. ESTIMATION OF PARAMETERS

Acquiring an accurate execution time model for an appli-
cation running on a GPU requires reliable profiling data. The
proposed estimation approach assumes three accurate factors
that can be profiled on the platform
• Application total wall-clock time tw,
• Host code execution time t1, and
• GPU kernel execution time tk.

The remaining factor tc, in contrast, is derived using tw,
t1 and tk. The proposed procedure for acquiring accurate
measurements for the factors are as follows: tw is measured
using the operating system clock, and tk is read from the pro-
filing data available from the GPU application programming
interface. The measurement of t1 is performed by modifying
the application so that all GPU-related calls are disabled and
the application only performs data I/O. Finally, tc is derived
from the other factors by subtracting t1 and tk from tw.

VI. EXPERIMENTS

The experiments presented below serve to illustrate the
suitability of the proposed model and Equations 2-5 for real-
life GPU-equipped platforms. Typical signal processing appli-
cations were used as case studies: matrix multiplication, digital
predistortion and Gaussian image filtering. The applications
were written in OpenCL and were executed on two GPU-
equipped platforms: the Odroid XU3 containing a Mali T628
GPU and a desktop workstation with the AMD RX 460
(Baffin) GPU.

The α and β parameters of the cost functions were estimated
with a Matlab script that invoked a least squares fitting
algorithm (see Section 2 of [11]). In the Matlab script, the
lsqlin function was used with a positive solution constraint.

Each application was profiled with two application vari-
ables, i.e., S and γ. Each variable had six values where S =
{ 512, 1024, 2048, 4096, 8192, 16384 } and γ = { 8, 16, 32,
64, 128, 256}. The global work size of OpenCL applications
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was set application dependently. For matrix multiplication and
predistortion, the work size set was calculated by 256*gamma,
while for gaussian filtering, it is 1024*γ. The reason for this
variation is in the input data types i.e. gaussian filtering reads
1-byte data, while matrix multiplication and predistortion read
4-byte data items. For each (γ, S) combination the execution
time was measured 10 times, giving a total of 360 samples
per application/architecture combination.

A. Application-architecture mapping

In OpenCL, when computations are performed on a GPU,
the CPU works as the host device that reads data from I/O,
sends it to the GPU for processing, receives the computed
result and stores it back to I/O. Based on the dataflow [3]
MoC, a generic model for OpenCL applications was created.
Data reading and writing of the CPU is mapped to an I/O node
(see Figure 1). The Kernel node represents the computations
performed on the GPU, whereas the communication between
the I/O and Kernel nodes is presented with a bidirectional
arrow in Figure 1.

In each actor firing of the application graph, actors and the
communication FIFO provide a token, which is mapped to
their associated PE or CN node of the model. In other words,
the tokens of the node I/O are mapped to the PE1 architecture
node, the tokens of Kernel are mapped to the GPU architecture
node, and the communication FIFO tokens to the CN node.
The cost functions shown below the architecture nodes have
two variables, thus two tokens on the mapping lines in Figure 1
are used to present the number of quanta for each variable.

B. Results and Discussion

This section shows how the proposed GPU execution time
model fits with the measured execution time samples. In Figure
2, Figure 3, and Figure 4 the bottom axes depict the variables S
and γ, whereas the vertical axis depicts execution time. The
dots represent the average of individual measured execution
time samples. The measured execution time samples are tw
(wall-clock time) values, and the mesh depicts the model-based
sum of tk + t1 + tc. For clarity, the measured time samples
depict the average of the 10 measurements for each (γ, S)
coordinate.

Table II depicts the calculated α and β parameter values for
each application on Baffin and Mali GPUs. These parameters
are used in the Equation 2 for calculating tw. The α value
represents the cost of a token and equals to the slope of
the mesh. The β value represents the constant time offset
of the relevant LSALG element and is the tw intercept of
the mesh graph. Due to technical difficulties, values for the
digital predistortion application were not acquired on the Mali
platform. App 1 is matrix multiplication, App 2 is digital
predistortion and App 3 is Gaussian filtering. M stands for
Mali and B for Baffin platforms.

Table III demonstrates the fitting error between the model
and measured samples for each application/platform combi-
nation as fidelity values. To highlight the improvement of the
proposed LSLAG model over conventional LSLA for GPU

TABLE II
CALCULATED COST FUNCTION PARAMETERS

App. αg βg α1 β1 αc βc

B1 0.001 0.008 0.000 0.004 0.005 0.068
M1 0.003 0.009 0.000 0.009 0.016 1.554
B2 0.005 0.049 0.002 0.003 0.060 0.000
B3 0.000 0.051 0.002 0.000 0.004 1.074
M3 0.003 0.023 0.022 0.000 0.082 0.460

TABLE III
FIDELITY OF THE TEST SETS ON EXECUTION PLATFORMS.

Application Platform Fidelity LSLAG Fidelity LSLA
(proposed)

1 Baffin 0.88 0.75
1 Mali 1.00 0.70
2 Baffin 0.90 0.92
3 Baffin 0.91 0.62
3 Mali 1.00 0.92

targets, Table III also shows the fidelity value for LSLA.
Fidelity is Kendall’s Tau Coefficient value calculated by the
corr function of Matlab. For computing the fidelity, the 360
execution time samples were randomly divided into a training
set of 288 samples, and a test set of 72 samples. Fidelity
calculations are performed similarly to [12] and present a value
between 0 and 1 where 1 would represent a perfect match
between model and samples.

In the Table III results, it can be seen that conventional
LSLA yields considerably worse fidelity than the proposed
LSLAG for GPU architectures. The reason for this is ev-
ident: LSLA does not capture parallelism (γ), which is an
integral part of GPU processing. An exception to this is the
predistortion application on the Baffin GPU, where LSLA and
LSLAG yield almost identical fidelity. The reason for this
is that on this platform, communication time dominates over
parallelized kernel execution, making the whole application
behave almost similar to a sequential application. Dominance
of communication can be seen in Table II as the high value
of coefficient αc for application B2.

The measured fidelity values also show that the proposed
linear LSLAG model fits better the Mali platform than the
Baffin platform. The difference is likely related to the different
memory architectures; Mali uses a shared memory between the
CPU and the GPU, whereas the Baffin GPU is connected over
PCI Express.

VII. CONCLUSION AND FUTURE WORK

In this work, LSLAG which is a GPU extension to the
LSLA model, was proposed. The proposed model is linear, like
the original LSLA model that is intended for multicore CPU
platforms. The validity of the proposed model was evaluated
by profiling three OpenCL applications on two GPU-equipped
platforms, and the achieved model fidelity was 93% for the
considered set of signal processing use cases.

Similar to the LSLA model, LSLAG can be used for
design space exploration and performance prediction of signal
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Fig. 2. Matrix multiplication on the Baffin GPU.
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Fig. 3. Gaussian filtering on the Baffin GPU.
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Fig. 4. Predistortion on the Baffin GPU.

processing systems, with the difference that the proposed
model also covers GPU-equipped architectures.

Future work involves extending the modeling approach to
cover energy measurements, and connecting the GPU exten-
sion to larger application graphs.
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