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Abstract—Gaussian Processes, representing a Bayesian frame-
work for regression, were already previously shown to allow ef-
fective range estimation in highly reverberant and noisy scenarios
from a single pair of microphones when using the Coherent-to-
Diffuse Power Ratio as a feature. In this work we investigate
how Gaussian Process regression can jointly estimate range and
Direction of Arrival by using the Coherent-to-Diffuse Power
Ratio and an additional Direction of Arrival estimation feature
(e.g., MUSIC) to achieve an estimate of the source position, based
on a single concentrated array requiring only two sensors as a
minimum.

Index Terms—Gaussian process regression, acoustic source
localization

I. INTRODUCTION

The estimation of the position of an acoustic source is an
important task for many signal processing applications as this
positional information allows to, e.g., steer a camera to the
source of interest [1] or to control speech enhancement algo-
rithms [2]. In principle, position estimation may be achieved
by estimating the Direction of Arrival (DOA) and the distance
of the source under consideration. A significant amount of
research has been dedicated to the task of DOA estimation
in the last decades: Subspace methods including the well-
known MUItiple SIgnal Classification (MUSIC) algorithm [3]
and Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT) algorithm [4] have been introduced.
Steered Power Response (SRP)-based methods have proven to
be powerful in reverberant scenarios [5]. Blind Source Separa-
tion (BSS) demixing filters have been exploited to extract DOA
information [6] and Expectation Maximization (EM)-based
DOA estimators have been proposed [7]. However, many DOA
estimation algorithms using linear microphone arrangements
suffer from systematic estimation errors, especially for high
reverberation times [8]. To address this issue, learning-based
DOA estimation methods have been proposed, e.g., based on
neural networks [9] or manifold learning [10].

On the contrary, distance estimation of an acoustic source
is much less investigated. If no precise knowledge about the
physical room parameters is available, the distance estimation
methods usually rely on machine learning techniques [11],
[12]. Following this direction, the Coherent-to-Diffuse power
Ratio (CDR) has been used in [13] for learning-based distance
estimation. The proposed method has been developed further
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for distributed training [14], distributed position estimation
[15] and fixed budget learning [16] in acoustic sensor net-
works.

In many cases, not only the DOA or the distance, but the
actual position of the source is of interest. A classification
method for a learned set of source positions has been proposed
in [17]. Several methods for acoustic source localization have
been proposed relying on spatially distributed sensor nodes:
Manifold learning has been applied to estimate the source
position in a previously trained acoustic enclosure in [18]. An
EM-based method for localization and tracking of multiple
simultaneously active sources relying on pairwise relative
phase ratios has been proposed in [19]. A general scheme for
triangulation of multiple DOA estimates has been developed
in [20].

In this contribution, we build upon previous publications on
CDR-based distance estimation and aim at a learning-based
acoustic position estimation algorithm relying on a single
concentrated Uniform Linear Array (ULA) without the need
of observations from distributed microphone arrays state-of-
the-art methods rely on. To this end, we extend the current
CDR-based approaches by a directional feature and we show
that DOA estimation benefits from a training phase for bias
removal and the integration of knowledge about the source
distance. Reversely, the incorporation of the DOA knowledge
is shown to assist the distance estimation. The proposed
method uses Gaussian Process Regression (GPR) [21] as a
machine learning tool to learn the mapping of the features to
the position of the source.

II. SIGNAL MODEL AND FEATURE EXTRACTION

We consider an ULA consisting of M microphones with
microphone spacing dp;c, capturing a single acoustic wideband
source. The Short-Time Fourier Transform (STFT) domain
representation of the microphone channels, stacked in the
vector

x(t, k) = [z1(t, k), ..., xp(t, k)]" (1)
with time index ¢ and frequency index k, can be expressed as

x(t, k) =h(0,k)s(t, k) + n(t, k). ()
Here, s(t, k) denotes the clean source signal and

n(t, k) = [ni(t,k),...,na(t, k)" 3)
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the received signal components corresponding to reverberation
and sensor noise. The direct path propagation of the source is
modeled by the source direction vector

h(0, k) = [1, e_jQT"fkT(a), o ,e—j%fk(1\/1—1)7'(9)]T7 4)
which is dependent on the source DOA 6. Hereby, fj denotes
the physical frequency corresponding to frequency bin k£ and
7 the time difference of arrival.

In the following, we describe a bin-wise directional and a
bin-wise distance-related feature, which are transformed into
broadband features through appropriate averaging operations.
Note that these features may be exchanged if other features
are more suitable for the task at hand.

A. Distance Feature

The employed distance feature is based on the CDR [22],
which has been successfully used for dereverberation [22]
and distance estimation [13]. Here, we exploit the fact that
the reverberant sound energy is approximately constant with
respect to the distance, whereas the energy of the coherent
signal components is decaying with increasing distance. To
estimate the CDR, the cross-Power Spectral Density (PSD)
and the auto-PSDs of microphone pair (i, j) are estimated by
recursive averaging

s (L k) = APy, (E—1,K) + (1= Ny (¢, k) (¢, k), (5)
where 4,5 € {1,...,M}, (-)* denotes complex conjugation
and A € [0,1] is a forgetting factor. An estimate of the
complex-valued spatial coherence of microphone signal pair
(i,7) can be computed by

Dy, (t, k)

T9(t k)= — - :
V B (K)o (1K)

(6)

To avoid any influence of the directional feature on the CDR-
based feature, we use the DOA-independent CDR estimator
(7), proposed in [22], here. The estimator relies on a model
for the coherence of a diffuse soundfield

sin(27 fr (4 — 4)dmic/c)
277 — )dmefc

T (k) =

®)
where ¢ denotes the speed of sound and 7 < j. To finally

obtain a scalar broadband feature, we average over the obser-
vation time interval containing 7" samples and the considered

1 ey 1
N = Z —
T(kmax — kmin + 1) t=1 k=ky;, CDR J(t’ k) +1

By construction, 7. € W,, = [0, 1] holds. Note that the CDR
is only defined for a pair of microphones.

B. Directional Feature

For the directional feature, we use the well-known MUSIC
algorithm [3]. MUSIC is a subspace method which relies
on the eigenvalue decomposition of the cross power spectral
density matrix @y (k). The signal subspace is of dimension
one and the eigenvectors spanning the noise subspace are
computed by eigenvalue decomposition and are stacked in the
matrix

Vo (k) = [va(k), ..., v (E)].

This matrix is employed to calculate the MUSIC pseudo
spectrum

(10)

1
BP0, k) =
(6, %) hH (0., k) V. (k) VE(k)h(6, k) + 6
where § > 0 is a regularization term to avoid division by
zero. The directional scalar broadband feature is calculated by
averaging the MUSIC pseudo spectrum over the considered
frequency range [f%,.., fk...) and maximization

(1)

Fnax -1

1 -1
R (e P
(12)
Here, f,,, and f, . denote the physical frequency correspond-
ing to the minimum and maximum frequency index k., and
kmax, respectively. The grid of candidate target directions is
denoted as

'min

¢ = {6, € [-90°,90°]|0, = —90° + vAf,v € No}, (13)

with angular resolution Af. Note that the feature values are
bounded by v4 € W, = [-90°,90°].

III. LEARNING-BASED POSITION ESTIMATION

In the following, we develop the proposed learning-based
position estimation algorithm. As we want to account for
different characteristic properties for the DOA label (, and
the distance label (;, we derive a generic regression model that
can be adapted to two different regression functions, which suit
both labels individually. To encode that, we use the variable
¢ € {G, (s} for both labels in the following derivation.

We model the label ¢ to be related with the two-dimensional
feature

E=[% ) €D=W, xW,, (14)
via the unknown function f; by
C=fe(€) +e with e~ N(0,02). (15)

Since the functions’ family is unknown a priori, we rely on
GPR for learning the functional relationships between feature
vector £ and both labels ¢ € {(;, (s}. The latent function f¢
is modeled to follow a Gaussian Process (GP)

fe ~GP(me, ke),

with mean function m¢ : D — Ry and covariance function
ke : D x D — R,. The hyperparameters of the mean and
covariance function can be calculated in a learning phase, e.g.,

(16)



2019 27th European Signal Processing Conference (EUSIPCO)
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CDR” = —— (F,f Re {F;} —|pi| -
‘r;ﬂ 1

\/(r:‘;)Q Re{f;f}2 —(rH)?

~.]2 . . i s
9|7+ (1) — 208 Re {1¥} + [1¥

2
) N

by optimizing the marginal likelihood [21]. In the following,
features and labels of the learning phase are marked by a tilde
(). The features used in the learning phase are collected in
the set

F = {én|n: 1,...,Nu—ain}7

where Ny, denotes the number of training data points. Based
on the collected feature values and the chosen covariance
function, the kernel matrix

a7

KC = [kC(£Z7£J)]l,] with 5176] € F and 7’7] = 17 .. ~7Nlrain

(18)
can be constructed. Similarly, the covariance vector of the
features of the training set with an unlabeled feature & is
defined as

k((&) = [k((sl,f)}, with 57 € Fand i = 1, ey Niain (19)
and the vector of mean function values is expressed as

m¢ = [m¢(€1), - me(Ena)] (20)

where m, will be defined later. We model the function value
fc(€) of an unlabeled feature £ and the labels for the direction
or distance of the training data points

é = [517 BERE) 5N1min}T with 51 € {é,iV EQM}

to be jointly Gaussian distributed
¢ } N({ m¢ } {K<+0’?I kc(E)D
~ , .22
[fz(e) m(©) | K@) k(o)) P
Now, we can calculate the mean of the posterior distribution

of the unknown label, i.e., the noiseless function value f¢(£),
which constitutes the desired regression function for label

¢ € {G G} 21
C = fel€) = me(€)+kL(€) (K +02T) ' (C—m). @3)

In the following, we will discuss the choices for the mean and
covariance functions used to specify the individual GP models
linked to the DOA (4 and the distance (.

2y

A. DOA Estimation

DOA estimation is usually done by using simple geometric
and physical models which allow to obtain an estimate without
the need of a learning phase. However, for many algorithms,
DOA estimation with ULAs suffers from systematic errors,
especially for large distances and high reverberation times [8].
Hence, a learning phase is optional but beneficial and, for
Time Difference of Arrival (TDOA)-based methods, does not
need different geometric models for near-field and far-field
conditions.

Since DOA estimation algorithms based on geometric mod-
els already yield estimates for (,, we incorporate these results
by choosing a linear mean function'

me, (&) = By + Bove (24)

where 3, and 34 denote coefficients controlling the slope of the
linear contributions. For the covariance function, we choose
the well-known Gaussian kernel
1 _

e, (€,€) = ag exp (2@ )L - 8)) @)
where a4, the so-called signal variance, controls the allowed
deviation from the mean function. The smoothness of the
latent function is controlled by two different length scale

parameters [, and [, for the distance and the directional feature,
respectively, which are contained in the matrix

L, = diag {I7,13} .

Hereby, diag{-- - } denotes the diagonal matrix with its argu-
ments as entries on the main diagonal.

(26)

B. Distance Estimation

The relation of the chosen distance-related feature ~; to the
actual distance between microphone array and source depends
on several room-specific physical parameters, which are un-
known in practice. Hence, this relation has to be learned from
observed data, i.e., learning is mandatory here. As we cannot
assume reliable prior knowledge about the latent function, we
take the common choice

me(§) =0 VEeD (27)

for the mean function. For the covariance function, we choose
a sum of two Gaussian kernels, one corresponding to a smooth
behavior (s) of the latent function and one corresponding
to a more dynamic behavior (d), to account for the smooth
behavior of the regression function for a large range of
distances and the strong slope for large distances (see [15])

ko(&,€)= > al..
i€{(s),(d)}

...exp (-3(5 )T (L) (- é")) :

(28)

Hereby, the length scale parameters [¢ and lfb are included in
the matrices

L}, =diag {(1})*, (15)?} with i€ {(1),(s)}. (29

IThe linear term [3;+; is motivated by a requirement of [23].
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Fig. 1. Simulated room environment of dimensions 10 m X 8 m X 3.5 m. The
training positions used for creating the training data set are marked by black
squares. The red cross marks the position of the arrays reference position.

b 9008 1100 LBy agal ol a2
1, 0, 0.15 0.5, 20, 0.25 0,1 0.5, 0.5, 10 0.01
TABLE 1

INITIAL VALUES FOR HYPERPARAMETER OPTIMIZATION

C. Position Estimation

For both regression functions, the hyperparameters
Iy, lr(s), lr(d), lg, lf;), lé)d), Br, By, g, ar(s), ar(d) and o2 are found
by optimization of the marginal likelihood function [21]
[23] before calculating the posterior mean function. Finally,
the evaluation of both posterior mean functions yield the

estimated source position in polar coordinates.

IV. SIMULATION STUDY

To assess the performance of the proposed algorithm, we
conducted experiments in a simulated enclosure of dimensions
10m x 8 m x 3.5m. All sources and microphones are placed
at the same height of 1.5m, i.e., we restrict the localization to
two dimensions. The Region of Interest (ROI) is chosen to be
a half annulus with inner radius 0.1 m and outer radius 2.1 m
centered at the ULA reference point. The ROI is covered by
training positions with angular resolution of 10° and radial
resolution of 0.2m, yielding a total of Ny, = 209 labeled
training pairs, see Figure 1. Room Impulse Responses (RIRs)
are simulated using the image source method [24] and the RIR
generator [25] for various Tgp. To simulate M/ = 4 microphone
signals, the simulated RIRs are convolved with speech signals
of 5sec duration at a sampling frequency of f, = 16kHz
and white Gaussian noise is added for a specific Signal to
Noise Ratio (SNR). Both spatial features are calculated in
the frequency domain: The MUSIC feature is computed using
non-overlapping rectangular windows of length 50 ms and the
CDR-based feature with a von Hann window of 25 ms length
and 12.5ms frame shift.

For the MUSIC algorithm, all microphones, with a spac-
ing of dpe = bHcm are used, whereas for the estima-

tion of the CDR, only the outermost microphones are ex-
ploited. The considered frequency interval was chosen to
be [frums fem) = [300 Hz, 4000 Hz] for both features. The
resolution of the candidate target directions for the MUSIC
algorithm was set to Af = 0.5°. For the smoothing parameter,
A = 0.9 was chosen to alleviate influence of speech pauses.
The optimization of the hyperparameters of the GPR models
has been initialized with the values given in Table I.

To assess the performance of the proposed algorithm,
Niest = 800 test positions, regularly uniformly distributed over
distance and directions within the ROI, are evaluated using
different speech signals for training and test and the position
error has been averaged over all N positions
N!es!

1 .
D; — pjll2-
=1

Neest 4
J

e= (30)
Hereby, p; denotes the jth test position and p; the corre-
sponding estimate.

Typical trained regression functions for DOA as well as for
distance estimation, i.e., posterior mean functions, are shown
in Figure 2 for T = 0.6s and SNR = 20dB. The figure
shows isolines, i.e., the set of feature vectors & which yield the
same label estimate. It can be clearly seen that the regression
function for the DOA varies for different distance features ¢,
i.e., the systematic error of the DOA estimator, corrected by
the regression function, depends on the estimated CDR and
thus on the radial distance. Especially for endfire directions,
the DOA is underestimated, which becomes more pronounced
for large distances, reflected by large values for (;. On the other
hand, the distance-related feature shows a dependency on the
direction of the source, which is pronounced between —40°
and 40°. As the isolines are not circular or radial, respectively,
it can be concluded that the two-dimensional feature vector
containing a directional feature as well as a distance-related
feature is beneficial for the regression task as directional
information can assist distance estimation and vice versa.
Figure 3 shows the average position error e for reverberation
times Tgp € {0.45,0.65,0.8s,1s} and SNR values between
—10dB and 30 dB. The values show that the algorithm works
robustly for a broad range of reverberation times and noise
levels. The algorithm delivers precise position estimates almost
independent of the SNR down to SNR = 0dB before the
performance degrades significantly.

V. CONCLUSIONS

In this contribution, we proposed a learning-based position
estimation algorithm for a single concentrated ULA based on a
directional and a distance-related feature. To this end, separate
regression functions for DOA and distance of an acoustic
source have been learned. Here, the directional feature was
shown to be beneficial for the distance estimation task and
vice versa. The next steps in the development of this method
will include the extension of the algorithm to semi-supervised
learning techniques. The generalization of the algorithm to
sensors embedded into scatterers and the extension to multiple
sources are also important next steps.
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Fig. 2. Contour plot of the regression function for DOA (4 (left panel) and distance ¢; (right panel) for Tgp = 0.6s and SNR = 20 dB. The colored lines
represent isolines of the underlying regression function, drawn in dependence of the underlying true labels.
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Fig. 3. Average position error e for different noise levels and reverberation
times.
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