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Abstract—Blurriness is a defect commonly occurring in con-
ventional video but also in omnidirectional video. In this work,
we propose a novel no-reference blurriness measure for images
captured with omnidirectional video cameras. These images
present unique challenges for quality measures due to their size
and due to the equirectangular projection which is commonly
employed for them. We base upon a state of the art algorithm and
adapt it for the specifics of omnidirectional images. Furthermore,
we extend it with a coarse-scale blurriness map for measuring
spatially varying blur. We present a novel ground truth dataset
which was generated by adding spatially varying gaussian blur of
different magnitude in a viewport-centric way. Experiments with
the proposed algorithm on this dataset show a strong correlation
of the localized blurriness measure with the ground truth.

Index Terms—image quality measure, no-reference blur assess-
ment, omnidirectional image, 360◦ video, VR

I. INTRODUCTION

Omnidirectional (360◦) video content recently got very
popular in the media industry, because it allows the viewer to
experience the content in an immersive and interactive way.
Omnidirectional consumer video cameras like the Samsung
Gear 360 or the Ricoh Theta V have multiple lenses and
capture images which cover the whole viewing sphere, typi-
cally in 4K or UltraHD resolution. The whole viewing sphere
is encoded in one 2D image for each timepoint, usually in
equirectangular projection [4]. Omnidirectional videos are typ-
ically consumed with a head-mounted display (HMD), so that
the user is free to choose the area (viewport) within the sphere
he is currently interested in. A high-quality omnidirectional
video, without major defects and distortions, is important in
this context in order to provide the viewer with an optimal
quality of experience.

Therefore, methods for measuring the quality of omnidirec-
tional video automatically are very valuable during capturing
and post-production. In this work we will focus on blurriness
estimation, as it is a distortion commonly occurring in video,
e.g. due to loss of focus or dirt on one the camera lenses of
the 360◦ camera.

The paper is organized as follows. Section II gives infor-
mation about related work in the literature. In Section III
we present the proposed algorithm for localized blurriness.
In Section IV we describe the novel ground truth dataset for
the evaluation of the localized blurriness measure and give
information how it was generated. In Section V we present

the results of the evaluation of the proposed algorithm on the
ground truth dataset, and Section VI concludes the paper.

II. RELATED WORK

Image quality metrics can be categorized either as full-
reference, reduced-reference or no-reference, depending on
the amount of information provided about the original image.
For full-reference quality metrics, the original image (without
defects) is provided. Reduced-reference quality metrics take
into account partial information derived from the original
image. For no-reference quality metrics, no information is
available about the original image. In many important appli-
cations in media production and delivery, only no-reference
quality metrics can be employed because only the distorted
image is available. Therefore, we will focus in the following
overview of related work on no-reference blurriness measures.

In [7] a spatial domain blurriness metric is proposed, based
on the concept of just noticeable blur (JNB). An algorithm
using the analysis of edges and adjacent regions in images is
proposed in [5]. A transform based method [11] uses statistics
of the discrete wavelet transform (DWT) coefficients in natural
images to produce blurriness scores for compressed images.
In [14] it is shown that local phase coherence (LPC) changes
and that precisely localized features, e.g. sharp edges, cause a
strong LPC in the complex wavelet transform domain.

Another blurriness metric which operates in the wavelet
transform domain is proposed in [3]. The algorithm analyzes
the local phase coherence of complex wavelet coefficients,
assuming that blur causes a disruption of local phase near
sharp image features. In [13] a method with low computational
complexity is proposed, which measures the log-energy in high
frequency discrete wavelet transform sub-bands. The authors
of [1] present a blurriness measure which employs a combina-
tion of natural scene statistics, multi-resolution decomposition
methods and machine learning techniques. In [2] a statistical
analysis of the local edge gradient is done in order to form a
Perceptual Sharpness Index (PSI). The algorithm proposed in
[6] assesses the amount of blur using the fourier transform and
spatial pyramids. The authors of [15] propose a deep learning
based blur estimation method which employs a two-stage
pipeline for blur classification and parameter estimation. A
pre-trained deep neural network is used for classifying the blur
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Fig. 1. Illustration of the algorithm workflow. Top: input image, middle:
binary edge image, bottom: blocks from which the blurriness is calculated.
Best viewed in color.

type and a general regression neural network for estimating the
blur kernel parameters.

All existing no-reference blurriness metrics in the literature
are designed for image content taken with a conventional
camera and therefore do not take into account the specifics of
omnidirectional image content. E.g. due to the equirectangular
projection which is commonly employed, the areas of the
sphere which are away from the equator are stretched in the
image. Furthermore, blurriness can change across the captured
image (e.g. as the properties of the different lenses of the
360◦ camera are different), so the algorithm should be able to
measure blur locally and consequently deliver a coarse-scale
blurriness map instead of a single value.

In the following, we will describe the first (to our knowl-
edge) no-reference blurriness measure which takes into ac-
count the specifics of omnidirectional images and which is
able to measure spatially varying blur.

III. PROPOSED ALGORITHM

The proposed algorithm for measuring blurriness is based on
the work presented in [2]. In Section III-A, a brief description
of the base algorithm from [2] is given, Section III-B describes
the necessary algorithm extension for omnidirectional images
and Section III-C describes the algorithm extensions for spa-
tially varying blur.

A. Base algorithm

In the first phase, a binary edge image is calculated from the
input image. For this, gradient images are calculated from the
input image and the average gradient magnitude is calculated.
From this, an adaptive threshold is calculated which is used

Fig. 2. Distortion map for vertical edges.

for calculating the binary edge image. An edge thinning is
applied then, yielding the edge image.

In the second phase, the edge width image is calculated,
which gives us for a certain pixel in the edge image the width
(in pixels) of the corresponding image edge. Only edges with
approximately vertical orientation are taken into account. For
an edge pixel, its edge width is now calculated by tracing along
the edge gradient until a minimum or maximum intensity is
encountered. From the pixel-wise edge width measure, now a
block edge width measure is calculated. For this, the image is
divided into blocks of size 32× 32 pixel. For each block, we
calculate the edge width for the block as the average of the
per-pixel edge width measurements.

Finally, a global edge width measure for the whole image
is calculated as the average of a certain quantile of the block
edge width measures. A global blurriness value is calculated
from the global edge width measure by applying a nonlinear
function. A visualization of some stages of the algorithm is
given in Figure 1.

B. Extensions for omnidirectional image content

Some general extensions have been done to the base al-
gorithm in order to cope better with omnidirectional image
content. Firstly, the phases where the edge width image is
calculated has been extended so that the edge width can be
measured also for pixels lying on approximately horizontal
edges. This is important for the subsequent localization, in or-
der to have more per-pixel measurements available. Especially
in indoor scenes, there are naturally a lot of approximately
horizontal edges in the content (e.g. from tables or other
furniture). Furthermore, several parameters have been adapted
in order to account for the size of the input images. E.g., an
Ultra HD image captured by an Insta360 Pro camera has a
size of 3,840 x 2,120 pixel. In order to compensate for the
doubling of the image size (from Full HD to Ultra HD), the
block size has been increased also from 32×32 pixel to 64×64
pixel, and all thresholds relying on the block size have been
adapted accordingly.

The input image of the blurriness algorithm is one frame
of the omnidirectional video in equirectangular projection (for
runtime considerations, we do not measure the blurriness in
the viewports as rendering many viewports is computationally
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Fig. 3. Visualized coarse-scale blurriness map (4× 2 matrix). The blurriness
value is overlaid in red tones (more intense red means higher blurriness).

expensive). Consequently, this means that the measured per-
pixel edge widths (in the second phase) are biased. E.g.,
vertical edges are stretched (enlarged) out due to the employed
projection.

In order to correct for this bias, we calculate distortion maps
for horizontal and vertical edges, which give us for each pixel
the correction factor C by which the measured edge width has
to be multiplied in order to correct for the bias. It is possible to
pre-calculate these distortion maps, as they depend only on the
resolution of the input image and not on the actual content. In
the following, the calculation of the distortion map for vertical
edges is briefly sketched (for horizontal edges, the procedure
is quite similar):
• For each nth pixel Pi in x and y direction, a viewport V

is generated. The viewport has a horizontal field of view
of 75◦ and an 16 : 9 aspect ratio. The viewport width is
set as a fraction (1/m) of the input image width, which
ensures that the blurriness measure is independent of the
resolution of the input image. We set the sampling distance
n to 10 and m to 5.

• The point Qi is calculated as the horizontal neighbor of Pi

via the formula Qi = Pi + (0, δ). The value δ is chosen
as 4–5 pixel.

• Both points Pi and Qi are mapped into the viewport V ,
yielding the mapped points Pv and Qv .

• The correction factor C is now calculated via the formula
C = ‖Pv−Qv‖

‖Pi−Qi‖ .
• From the sparse map of correction factors, a dense map

is generated for each pixel via the spatial interpolation
method given in [9].

The distortion map for vertical edges is visualized in Figure
2.

C. Extensions for localization
The base algorithm calculates only one global blurriness

value for the whole input image. So in order to calculate a
coarse-scale blurriness map for measuring spatially varying
blur, the last phase of the algorithm had to be modified as
follows.

From the block edge widths, the goal is to calculate a
coarse-scale blurriness map, e.g. as a 4 × 2 matrix of blur-
riness values. This corresponds to the classical problem of

Fig. 4. Visualization of the 240 overlapping viewports employed in viewport-
centric image transformation.

interpolating function values at regular spaced points of a
grid from known function values at irregularly sampled points,
namely from the block edge widths which are the result of the
intermediate phase of the algorithm. In order to calculate the
function values at the points of the regular grid, we employ
interpolation based on radial basis functions [10]. Specifically,
we employ thin-plate splines

τ (r) = r2 log (r)

as radial basis functions and employ Tikhonov regularization
[8] in order to avoid overfitting. The visualized coarse-scale
blurriness map can be seen in Figure 3.

IV. EVALUATION DATASET

For an objective evaluation of the proposed algorithm,
a ground truth dataset of omnidirectional images affected
by spatially varying blur of different magnitude is needed.
Unfortunately, such a dataset is not available, therefore we had
to generate it synthetically. For this, we propose in Section
IV-A a novel viewport-centric method for transforming an
omnidirectional image in a certain way (e.g., add synthetic blur
in the viewport). In Section IV-B we utilize this method for
the generation of the ground truth dataset used for evaluation.

Coordinates on the viewing sphere are usually given in a
longitude-latitude representation. In the following, the longi-
tude is always denoted by φ and has the range [−180, 180].
The latitude is always denoted by θ and has the range
[−90, 90]. All angles are in degrees.

A. Viewport-centric image transformation

The method we propose for viewport-centric transformation
of an omnidirectional image I (in equirectangular projection)
consists of three main steps. We first decompose the viewing
sphere into a set of overlapping viewports {vi} so that the
full sphere is covered and render a viewport image ri for each
viewport. Each viewport image ri is then transformed in a
certain way depending on the application (e.g. add blur or
add noise) which gives its transformed version r̃i. In the last
step, the transformed omnidirectional image Ĩ is rendered as
an aggregation of the transformed viewport images r̃i. In the
following, we will outline the first and last step more in detail.
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Fig. 5. Some of the references images used for generation of the ground truth
dataset.

Viewing sphere decomposition For the decomposition of
the viewing sphere, we generate a set of points {ci} which
are approximately uniformly distributed on the sphere. These
points will serve then as the center of the respective viewport
vi. We employ the Vogel method [12] for generating approxi-
mately uniformly distributed points. It basically wraps a planar
sunflower-like spiral around a sphere, employing the golden
angle during the construction of the spiral. For each point ci,
we create a quadratic viewport vi with ci as its center.

We employ 240 viewports, with each viewport having a
horizontal and vertical FOV of 24 degrees. The FOV has
been determined heuristically in a way so that each point of
the viewing sphere is contained in at least one viewport. For
each viewport, a viewport image ri is now rendered from the
omnidirectional image I employing bilinear interpolation. A
visualization of the viewports (back-projected to the image in
omnidirectional projection) can be seen in Figure 4.

Aggregated rendering For rendering the transformed om-
nidirectional image Ĩ from the set of transformed viewport
images r̃i, we employ a method which is similar in spirit to the
image warping algorithm described in [9]. For the aggregated
rendering, we employ an accumulator image A and a weight
image W . Both are floating-point images of the same size as
the image I and are set to zero initially.

For each transformed viewport image r̃i, we iterate over all
the source pixel pv of it and map them to the corresponding
position pi in the omnidirectional image I . The position pi
has typically non-integer coordinates, so we cannot write the
source pixel intensity directly. We instead write into the four
surrounding pixels of the position pi via a sort of ’bilinear
writing’. For that, we increment the four surrounding pixels
of pi in the accumulator image A and in the weight image
W . The amount of increment depends on the distance of pi
to the specific pixel neighbor. After processing all viewports,
the transformed omnidirectional image Ĩ is calculated via Ĩ =
A/W (pixel-wise division).

B. Ground truth dataset generation

For the generation of the ground truth dataset used for eva-
lution of the localized blurriness algorithm, we extracted a set
of representative reference images from several 360◦ videos
which were considered as sharp by a human. Gaussian blur

TABLE I
PERFORMANCE METRICS FOR THE WHOLE DATASET AND SEPARATELY
FOR THE SUBSETS WITH NO, MEDIUM OR STRONG SPATIAL VARIATION.

metric spatial variation
combined no medium strong

PLCC 0.8512 0.8852 0.8688 0.8264
SRCC 0.8413 0.8520 0.8511 0.8211

of varying magnitude and with different spatial distribution
was then added to these reference images with the method
described in Section IV-A, which gives us the ground truth
dataset. In the following, the procedure is described more in
detail.

Specifically, we extracted 60 reference images (see Figure 5
for some examples) from 12 different omnidirectional videos.
The video sequences are quite diverse and contains both indoor
and outdoor scenes with different motion characteristics. The
resolution of the reference images is Ultra HD (3,840 x 2,120
pixel).

From each reference image, we generate a set of 80 synthet-
ically blurred images together with their corresponding ground
truth blurriness map. For this, we first define a set of 9 values
σi = 1.25i, i = 0 . . . 8. These give us the base values for the
amount of gaussian blur to be added, which are then multiplied
with a spatially varying function ρ (φ, θ).

We employ 3 models for the spatial variation of the synthetic
blur: no spatial variation, medium spatial variation and strong
spatial variation. For medium and strong spatial variation,
the variation is either in φ or in θ (not in both), and it
can be either linearly ascending or descending (linear ramp)
in the range [a, b]. For medium spatial variation, we define
this range as [0.8, 1.2], whereas for strong spatial variation
it is defined as [0.6, 1.4]. This gives us 9 different functions
ρj (φ, θ) , j = 0 . . . 8 for modeling the spatial variation - one
for no spatial variation and four functions for medium as well
as strong spatial variation. So we generate 81 spatially varying
functions

sij (φ, θ) = σi · ρj (φ, θ)

which for a certain position (φ, θ) give us the amount of blur
(as the sigma of the gaussian blur kernel which will be applied
to the viewport image) to be added there.

By transforming each reference image with all 81 blur func-
tions sij , we finally produce a dataset of 4,860 synthetically
blurred omnidirectional images. For each synthetically blurred
image, the corresponding ground truth blurriness map is also
calculated from the blur function sij . We assume that the
blurriness algorithm is calculating a coarse-scale blurriness
map with dimensions 4× 2.

V. EXPERIMENTS AND RESULTS

For evaluating the performance of the proposed localized
blurriness algorithm on the ground truth dataset, two different
metrics were employed: Pearson linear correlation coeffi-
cient (PLCC) and Spearman rank order correlation coefficient

2019 27th European Signal Processing Conference (EUSIPCO)



Fig. 6. Scatter plot of ground truth sigma (x-axis) versus the blurriness
measure reported by proposed algorithm (y-axis).

(SROCC). The blurriness algorithm calculates for each image
a coarse-scale blurriness map with matrix dimension 4 × 2
which is compared to the respective ground truth blurriness
map. By accumulating over all 4,860 synthetically blurred
images of the dataset, we obtain a set of 38, 880 tuples, from
which the specific performance metric is calculated.

The results are presented in table I. We can see that the
results of the proposed localized blurriness algorithm are
highly correlated with the ground truth, with a Pearson linear
correlation coefficient of 0.8512 and a Spearman rank order
correlation coefficient of 0.8413. The high correlation can also
be observed from Figure 6. We calculated the performance
metrics also for subsets of the whole dataset, specifically for
the subsets corresponding to one of the three spatial variation
models of synthetic blur: no spatial variation, medium spatial
variation and strong spatial variation. The results which are
also given in table I indicate that the performance of the
algorithm is still very good for all subsets, but decreases
somewhat when the spatial variation of the synthetic blur is
larger.

The runtime of the proposed algorithm for one omnidi-
rectional image in Ultra HD resolution is approximately 300
milliseconds on a Xeon QuadCore 3.5 Ghz CPU. This allows
for real-time processing of a 360◦ video in Ultra HD resolution
when temporal subsampling (by taking every 10th frame) is
employed.

VI. CONCLUSION

In this work, we presented a novel no-reference blurriness
measure for omnidirectional images and video. It builds on
a state of the art algorithm and adapts it for the specifics

of omnidirectional images like the equirectangular projection.
Extensions for localization are added in order to measure blur
which is spatially varying. For evaluation of the algorithm, a
novel ground truth dataset was generated by adding spatially
varying gaussian blur of different magnitude in a viewport-
centric way. The novel method for viewport-centric image
transformation could be used also for other image transfor-
mations (e.g. for adding gaussian noise). Experiments with
the proposed algorithm on the ground truth dataset show a
strong correlation of the localized blurriness measure with the
ground truth.
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