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Abstract—Several speech processing methods assume that a
clean signal is observed in white Gaussian noise (WGN). An
argument against those methods is that the WGN assumption is
not valid in many real acoustic scenarios. To take into account
the coloured nature of the noise, a pre-whitening filter which
renders the background noise closer to white can be applied. This
paper introduces an adaptive pre-whitener based on a supervised
non-negative matrix factorization (NMF), in which a pre-trained
dictionary includes parametrized spectral information about the
noise and speech sources in the form of autoregressive (AR)
coefficients. Results show that the noise can get closer to white, in
comparison to pre-whiteners based on conventional noise power
spectral density (PSD) estimates such as minimum statistics and
MMSE. A better pitch estimation accuracy can be achieved as
well. Speech enhancement based on the WGN assumption shows
a similar performance to the conventional enhancement which
makes use of the background noise PSD estimate, which reveals
that the proposed pre-whitener can preserve the signal of interest.

Index Terms—pre-whitening, NMF, spectral flatness, pitch
estimation, speech enhancement

I. INTRODUCTION

The presence of additive noise is inevitable in many acoustic
scenarios. Although the noise characteristics can be explicitly
taken into account for estimating the parameters of a signal of
interest (as in [1], [2]), many methods rely on a white Gaussian
noise (WGN) condition (see, e.g. [3]–[5]), since this is conve-
nient from a mathematical point of view. This WGN assump-
tion can be quite unrealistic, as real noise types are typically
coloured. Applying methods based on the WGN assumption
in real noise scenarios can degrade their performance. One
example is when sub-harmonic errors appear when estimating
the fundamental frequency (a.k.a. pitch) of voiced speech
segments [6], [7] from estimators which assume WGN. A pre-
processor which renders the coloured noise closer to white,
namely a pre-whitener, can alleviate this problem. Applying
pre-whitening using a linear filter is advantageous compared to
a general linear transformation with, e.g., the Cholesky factor
[4], since the effect of linear filtering can be modeled by only
changing the sinusoidal amplitudes and phases [6], [7]. Unlike
general linear transformations, linear filtering thus enables us
to use many existing model-based estimators based on a WGN
assumption. A linear FIR filter with response

A(ω) = 1 +
P∑
i=1

az(i)e
−jωi (1)

can be used to whiten the noise if the coloured noise is
modeled as an autoregressive process AR(P ) resultant by
passing white Gaussian excitation noise with variance σ2

e
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through an IIR filter with response H(ω) = 1/A(ω). Here, P
denotes the linear prediction order, and {az(i)}Pi=1 are known
as the prediction coefficients. The filter in (1) is referred as
the LPC pre-whitening filter, and it corresponds to a FIR
filter with coefficients {1, az(1), ..., az(P )}, which in practice
are found from the estimated second-order noise statistics,
namely the noise PSD (power spectral density). The influence
of filtering-based pre-whitening schemes based on well-known
noise PSD estimates, such as minimum statistics (MS) [8],
improved minima controlled recursive average (IMCRA) [9],
and minimum mean squared error (MMSE) [10]), on the pitch
estimation performance, was studied in [6]. Although these
schemes will help, for example, in reducing the sub-harmonic
errors of the pitch estimates, it was found that the performance
is far from that of the oracle pre-whitener. Consequently, we
believe that performance improvements are possible if a more
accurate noise PSD is estimated.

Including prior spectral information about typical speech
and noise spectral shapes has been shown to be beneficial
for the noise PSD estimation accuracy [11], specially under
non-stationary noise conditions. In a similar way, we here
investigate if an adaptive pre-whitener (i.e., an FIR filter whose
parameters change every time frame) based on offline trained
speech and noise spectral envelopes can render the noise
closer to white, and thereby improve the estimation accuracy
of a maximum likelihood (ML) pitch estimator [12], [13].
Specifically, a sum of AR processes model [14] is considered,
which was motivated by the source/filter speech production
model. In this model, the likelihood maximization corresponds
to a parametric non-negative matrix factorization (NMF) [15]
of the observed periodogram matrix into a dictionary matrix
of pre-trained spectral envelopes, parametrized by AR coeffi-
cients, and a matrix of activation coefficients, with the Itakura-
Saito (IS) divergence as the optimization criterion.

The rest of the paper is organized as follows. In Section
II, the problem is formulated. In Section III, we detail how
to estimate the noise PSD using a parametric NMF approach,
and we give a summary of the pre-whitening process. Next,
in section IV, we compare the noise flatness from the new
pre-whitener to others based on conventional noise PSD esti-
mators, and we also evaluate its influence on pitch estimation
and on speech enhancement. Finally, section V concludes the
presented work.

II. PROBLEM FORMULATION

In this work, we assume that coloured noise z(n) is added
to a clean speech signal of interest s(n), i.e.,

2019 27th European Signal Processing Conference (EUSIPCO)

978-9-0827-9703-9/19/$31.00 ©2019 IEEE



x(n) = s(n) + z(n), (2)

where x(n) is the observed noisy signal. For the purpose of
pre-whitening z(n) with an LPC pre-whitener, i.e., rendering
coloured noise white, the prediction coefficients {az(i)}Pi=1 in
(1) have to be estimated. Given the noise PSD φz(k), k =
1, ..., K, the noise autocovariance sequence is obtained from
the Wiener-Khintchine theorem as [13]

rz(n) =
1

K

K−1∑
k=0

φz(k) exp

(
j
2π

K
nk

)
, 0 ≤ n ≤ P, (3)

where k denotes the frequency bin and K is the number of
frequency bins. Then, the Levinson-Durbin recursion [16] is
used to compute the WGN excitation variance σ2

e and the P
noise prediction coefficients {az(i)}Pi=1, which forms the LPC
pre-whitening filter in (1).

In practice, the noise PSD φz(k) is estimated for every
frame from the noisy signal periodogram φ(k). This can be
done for example, with one of the well-known noise tracking
methods, such as MS [8] or MMSE based on speech presence
probabilities [10]. However, as was seen in [6], LPC pre-
whitening performance based on these noise PSD estimates
is still far from the oracle one in, e.g., non-stationary noise.
An MMSE-based noise PSD estimate can be obtained as [10]

φz(k) =

(
1

1 + ξ(k)

)
φ(k) +

(
ξ(k)

1 + ξ(k)

)
λ2z(k), (4)

where ξ(k) = λ2S(k)/λ
2
Z(k) is known as the a priori SNR,

with λ2S(k) and λ2Z(k) being the PSDs of s(n) and z(n)
respectively, at frequency bin k. For the proposed pre-whitener,
we still use (4). However, we obtain an estimate of ξ(k) from a
parametric NMF derived from the sum of AR processes model
introduced in [14], and explained in the next section. Because
of the Kolmogorov-Szego theorem [16], even if the sum of
two or more AR processes is not theoretically AR, in order to
apply an LPC pre-whitener, an AR approximation of the PSD
is possible if a large prediction order P is used. 1

III. NOISE PSD ESTIMATE BASED ON PARAMETRIC NMF

In [14], the sum of AR processes model was introduced
in an NMF context. There, a noisy signal frame x =
[x(0), ..., x(K − 1)]

T is represented as a sum of U = Us+Uz
AR processes tu, i.e.,

x =
U∑
u=1

tu =

Us∑
u=1

tu +
U∑

u=Us+1

tu, (5)

where Us is the number of AR processes corresponding
to the speech signal, Uz is the number of AR noise pro-
cesses, (·)T denotes transpose, and K is the segment length
in samples, corresponding also to the number of frequency
bins. Each one of these AR processes is expressed as a
multivariate Gaussian tu ∼ N (0, σ2

uQu). Here, Qu is the

1The value of P will be limited by the available data [16] (usually P <
K/3), where a low P could result on a very smooth spectrum, while a P too
large could result on spurious peaks.

gain normalized covariance matrix, which can asymptotically
be approximated as Qu = K−1FDuFH [17], where F =
{exp(j2πnk/K)} , n, k = 0, 1, ...,K − 1 and

Du =
(
ΛH
u Λu

)−1
, Λu = diag

(
FH

[
aTu 0

]T)
, (6)

where au is the AR coefficients vector of the uth spectral
basis. The different pre-trained basis, i.e., spectral envelopes,
are contained in a dictionary matrix D ∈ RK×U≥0 . In order to
maximize the likelihood as a function of U excitation variances
and U AR spectral envelopes, the U × 1 vector of activation
coefficients σ =

[
σ2
1 ... σ

2
U

]T
is estimated online as

σ̂ = argmax
σ≥0

p(x|σ,D) = argmax
σ≥0

N

(
0,

U∑
u=1

σ2
uQu

)
.

(7)
This vector corresponds to the excitation variances of each one
of the trained a priori AR processes. The log-likelihood can
be computed and simplified as (see [14] for further details)

ln p(x|σ,D) = −K
2

ln 2π−1

2

K−1∑
k=0

(
φ(k)∑U

u=1 φ̂u(k)
+ ln

U∑
u=1

φ̂u(k)

)
(8)

.The summation over U spectral basis in (8) is the
parametrized representation of the PSD per frequency bin
k, and is expressed as

∑U
u=1 φ̂u(k) = dTkσ, where dk =

[d1(k) ... dU (k)]
T is the kth row of D. Therefore, the like-

lihood maximization is equivalent to the minimization of
the IS divergence between the observed periodogram φ =
[φ(1) ... φ(K)]

T and the parametrized PSD Dσ where D =
[d1 ... dK ]

T , under the constraint φ(k) > 0 ∀k, i.e.,

σ̂ = argmin
σ≥0

dIS (φ|Dσ) . (9)

Each one of this set of activation coefficients can be iteratively
estimated by means of a multiplicative update (MU) rule

σ̂ ← σ̂ �
{

DT (Dσ̂)
[−2] � φ

}
�
{

DT (Dσ̂)
[−1]
}
, (10)

where � and � are element-wise product and division, respec-
tively. The exponentiation is also an element-wise operation.

The observed periodogram matrix Φ ∈ RK×R≥0 can be
expressed as Φ ≈ DΣ, where R is the number of frames
and Σ ∈ RU×R≥0 is the activation matrix which contains
in each one of its columns the activation coefficients for a
single frame. Therefore, this corresponds to a supervised NMF
where D contains the gain-normalized (i.e., unitary variance)
parametrized AR spectral envelopes [13] in each one of its

columns as d̃u =
[
d̃u(0) ... d̃u(k) ... d̃u(K − 1)

]T
, where

each frequency-bin element is given by

d̃u(k) =
1∣∣∣1 +∑P ′

i=1 au(i) exp
(
− 2πjik

K

)∣∣∣2 , (11)

where {au(i)}P
′

i=1 are the P ′ AR coefficients of the uth spectral
basis. The first Us columns of D correspond to AR speech
spectral envelopes and the last Uz ones to AR noise spectral
envelopes, i.e., D = [Ds Dz].
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Finally, after estimating Σ, in order to estimate the noise
PSD φz(k) as in (4), estimates λ̂S and λ̂Z can be obtained as
λ̂2S(k) = [DsΣs](k+1),i and λ̂2Z(k) = [DzΣz](k+1),i, where
Σs corresponds to the first Us rows of Σ and Σz to the last
Uz ones. Then, an estimate ξ̂(k) = λ̂2S(k)/λ̂

2
Z(k) is found.

For a more robust adaptive pre-whitener, which takes into
account noise types or samples which may not be well
represented in the pre-trained spectral basis, we also append
as a last column in D a spectral envelope corresponding to the
MMSE noise PSD based pre-whitener {ammse(i)}P

′

i=1 [10]

d̃mmse(k) =
1∣∣∣1 +∑P

i=1 ammse(i) exp
(
− 2πjik

K

)∣∣∣2 . (12)

A summary of the pre-whitening process is given in Table I.

Table I: Summary of the proposed pre-whitening scheme.

1) Train speech and noise codebooks on LSF coefficients, convert
them to {au(i)}P

′
i=1 coefficients and build D = [DS DZ ]

whose columns are given by (11).
2) For every frame, estimate φ(k) = |X(k)|2 /N, k = 1, ...,K.
3) Add spectral envelope from MMSE PSD estimator to D.

a) Estimate the MMSE noise PSD estimate from [10].
b) Estimate rmmse(n) from (3)
c) Estimate {ammse(i)}P

′
i=1 from Levinson-Durbin recur-

sion and form spectral envelope as (12), for each frame.
4) Find σ̂est per frame, and therefore Σ.

a) Initialize σ̂est with random positive numbers.
b) Compute σ̂est with the MU rule in (10) for 40 iterations.

5) Compute λ̂2
S(k) = [DsΣs](k+1),i, λ̂

2
Z(k) = [DzΣz](k+1),i.

6) Compute ξ̂(k) = λ̂2
S(k)/λ̂

2
Z(k).

7) Compute pre-whitening filter based on estimated noise PSD.
a) Estimate noise PSD φz(k) per frame as in (4).
b) Estimate noise covariance from (3).
c) Estimate noise prediction coefficients from Levinson

Durbin recursion which form filter in (1).

IV. EXPERIMENTAL EVALUATION

In this section, we quantify how well the described pre-
whitener works in terms of the spectral flatness measure
(SFM), how it improves pitch estimation performance and how
well it works for speech enhancement. For these purposes, a
general speech codebook was trained from approximately 54
minutes of sentences from 4 different speakers of the CMU
Arctic database [18], resampled from 16 to 8 kHz. The offline
training of the codebooks was done using a standard vector
quantization technique from speech coding [19] on the line
spectral frequency (LSF) coefficients. The parameters for both
the training and for the NMF based pre-whitening (LPC Par-
NMF) are summarized in Table II. The noise codebook was
trained on noise samples from the Aurora database [20] of
restaurant, street, car and airport noise types. Excerpts from
the Keele database [21], resampled to 8 kHz, with added
babble or exhibition noise from the Aurora database, were
used for the evaluation. It is important to note that these
noise types were not included in the training stage, and
also that the testing speech involves other speakers (i.e., of

another database) different from those of the training stage.
LPC pre-whiteners based on other noise PSD estimates (e.g.,
MS, MMSE, IMCRA), as well as the oracle (AR parameters
directly computed from the noise signal), with the same frame
duration and overlap as in Table II, were also applied to
compare their performance to our proposed pre-whitener.

Table II: NMF Pre-whitener parameters

Parameters Value
sampling frequency(Hz) 8000

frame duration 32 ms
frame overlap 50%

speech order P ′ 14

Parameters Value
noise order P ′ 14

Us 32
Uz 14

MU iterations 40

A. Spectral flatness measure (SFM)

To demonstrate how well the described pre-whitener renders
noise closer to white, the whiteness of the noise is quantified
in terms of the SFM, defined as [13], [16] the ratio of the
geometric mean to the arithmetic mean of the pre-whitened

noise PSD φzw, i.e., SFM =

(
K
√∏K−1

k=0 φzw(k)
)

( 1
K

∑K−1
k=0 φzw(k))

. The SFM
is bounded between 0 (more coloured noise) and 1 (perfect
white noise). Babble and exhibition noise types were added
at SNRs from -10 to 10 dB. Before pre-whitening, the mean
SFM of babble noise was 0.07 and for exhibition noise it was
0.30 at all SNRs. Results of the pre-whitened noise SFM are
shown in Fig. 1 for two LPC pre-whitening orders (P = 20
and P = 30). It is observed that the highest SFM (closest
to the oracle pre-whitener) can be achieved with the NMF
based pre-whitening scheme for babble noise at all SNRs,
while for exhibition this happens for SNRs below 5dB, since
at greater SNRs a similar SFM to pre-whiteners based on MS
and MMSE is observed. It is also noted that using a higher
LPC pre-whitening order implies a higher SFM, i.e., the noise
gets closer to white.

B. Pitch estimation

We now consider the task of estimating the pitch ω0 of
a periodic signal buried in additive coloured noise. Voiced
speech segments can be modeled as a periodic signal s(n)
consisting of L harmonics whose frequencies are an inte-
ger multiple of ω0, having a real amplitude Cl and phase
ψl ∈ [0, 2π). When such signal segments are contaminated
by uncorrelated additive coloured gaussian noise z(n), the
signal model becomes x(n) =

∑L
l=1 Cl cos(nω0l+ψl)+z(n).

In particular for speech, this model is valid for short time
segments (∼20-30 ms) where the speech is considered as
stationary.

When K noisy samples are stacked in a vector as x =
[x(0) ... x(K − 1)]

T , the signal model becomes x = s+z =
Bc+z, where c = 1

2 [C1e
jψ1 C1e

−jψ1 ... CLe
jψL CLe

−jψL ],
B = [b(ω0) b∗(ω0) ... b(ω0L) b∗(ω0L)] and b(ω0l) =
[1 e−jω0l ... e−jω0l(K−1)]T . If z = [z(0) z(1) ... z(K − 1)]

T

is WGN, the ML pitch estimate ω̂0 is [4], [13]

ω̂0 = argmax
ω0

xTΠBx, (13)
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Figure 1: mean and 95% confidence interval of the SFM as a
function of SNR.

where ΠB = B(BHB)−1BH with (·)H denoting the hermi-
tian transpose. As we are here concerned with pitch estimation
in coloured noise, an LPC pre-whitener can be applied to
the noisy vector x since asymptotically this only modifies the
complex amplitude vector c [6] and not ω0. Solving (13) in a
fast way is described in [12].

In the tested Keele database excerpts, the pitches which
were manually annotated are considered here as the ground
truth [21]. In order to match the available ground truth,
segments of duration 30 ms and an overlap of 20 ms between
them were used for the pitch estimation setup. Babble and
exhibition noise were added to the testing sentences at SNRs
from -4 to 10 dB. After pre-whitening the noisy signals,
the pitch was estimated in an interval [60, 380] Hz, with a
maximum possible of 15 harmonics. The evaluation was done
in terms of gross error rates (GER), which is the proportion
of frames where both the ground truth and the pitch estimator
result in the presence of a pitch (i.e., L̂ > 0), where the relative
error of the estimated pitch is larger than a certain percentage
[22]. Here we use 10%. An LPC pre-whitening order P = 30
is used for both scenarios, since from the SFM experiment we
saw that with a higher P the noise can get closer to white.
As a reference, the pitch was also estimated without any pre-
whitening (WGN assumption). The results are depicted in the
first row of Fig. 2.

We also conducted an experiment with a specific speaker of
the CMU Arctic database, for which a codebook was trained
on 24 minutes of speech material (with the same parameters
as the general speech codebook), and then we evaluated the
pitch estimates on 40 sentences from the same speaker, not
included in the training. The evaluation was also done with

30 ms segments, with an overlap of 20 ms between them. For
this case, the ground truth was obtained by estimating pitches
from the clean speech segments using (13). We also evaluated
the pitch estimation performance on 40 sentences from same
speakers of the general speech codebook, which were not used
for the training. Results for the specific speaker are depicted
in the second row of Fig. 2, and for general speakers in the
last row of Fig. 2.
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Figure 2: Gross error rate (GER) as a function of SNR.

It is seen that the suggested pre-whitener helps better in
reducing the GER of the pitch estimates, in comparison to
others based on well-known noise PSD estimates (MS and
MMSE), since for both noise types, the parametric NMF pre-
whitener performance is the closest to the oracle one. In fact,
for exhibition noise type the performance gets very similar to
the oracle pre-whitening, implying that a more accurate noise
PSD could be captured. We speculate that this is due to that
the exhibition noise is more stationary.

C. Speech enhancement
Finally, we verify that using the proposed pre-whitener

as a pre-processor will not ruin the signal. The approach is
to do speech enhancement on the pre-whitened noisy signal
from a WGN assumption (i.e., with the WGN variance as the
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Table III: Results of segSNR improvement in babble noise

Enhanc. method segSNR improvement (in dB)
w/ OM-LSA -2dB 1dB 4dB 7dB
MS pre-wh 2.74±0.20 2.61±0.20 2.43±0.23 2.17±0.28

MMSE pre-wh 3.15±0.22 2.94±0.24 2.63±0.30 2.30±0.40
ParNMF pre-wh 3.75±0.29 3.28±0.25 2.71±0.33 2.07±0.51
Conv.(no pre-wh) 3.41±0.25 3.06±0.26 2.63±0.36 2.19±0.52

Table IV: Results of PESQ in babble noise

Enhanc. method PESQ
w/ OM-LSA -2dB 1dB 4dB 7dB
Noisy Speech 1.63±0.15 1.77±0.12 1.96±0.11 2.16±0.10

MS pre-wh 1.71±0.08 1.93±0.08 2.16±0.07 2.39±0.07
MMSE pre-wh 1.72±0.08 1.94±0.07 2.17±0.06 2.40±0.05

ParNMF pre-wh 1.74±0.10 1.97±0.07 2.21±0.05 2.41±0.04
Conv.(no pre-wh) 1.73±0.09 1.95±0.08 2.18±0.06 2.41±0.05

single noise parameter), and then undoing the pre-whitening by
applying the inverse of the pre-whitening filter. It is important
to note that we do not encourage to pre-whiten a noisy
signal before enhancing it in a real setup, it only serves
as a mean of verification of the presented pre-whitener. We
use the optimally modified log-spectral amplitude estimator
(OM-LSA) [23] algorithm for this enhancement task. The
WGN variance is also calculated when one computes the noise
prediction coefficients from the Levinson-Durbin recursion, as
explained in Sec. II. In order that this WGN variance does
not change abruptly, a recursive smoothing with a smoothing
factor of 0.88 is used after computing the noise PSD from (4).

The evaluation is done under babble noise conditions, and
again a pre-whitening order P = 30 is used, including also
pre-whitening based on MS and MMSE. Noisy speech is also
enhanced without applying a pre-whitener, i.e., by using a
conventional noise PSD estimate [10] directly with OM-LSA.
Segmental SNR improvement and PESQ are reported in Tables
III and IV, where 95% confidence intervals are seen for each
value. In general, the performance from the proposed pre-
whitener is better in comparison to the other pre-whiteners
since it results in a higher average segSNR improvement
(below 7dB) and higher average PESQ. Similar results to
the conventional enhancement method are seen by using the
presented pre-whitener, which indicates that a signal can be
recovered even if it was pre-whitened for another purpose.

V. CONCLUSIONS

In this work, we proposed a new adaptive NMF based pre-
whitener with pre-trained spectral envelopes parametrized with
AR coefficients. The proposed pre-whitener achieves a higher
spectral flatness in comparison to pre-whiteners based on clas-
sical noise PSD estimators, and therefore reduces considerably
the pitch errors. Speech enhancement results based on the
WGN assumption show that the pre-whitener can preserve the
signal of interest. A fundamental question is why one would
pre-whiten the signal instead of just enhancing it, so further
research in answering this question should be conducted.
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